摘要:
The invention relates to the use of a polysaccharide which is excreted by the Vibrio diabolicus species for the re-generation and protection of the non-mineralised connective tissue of the periodontium.
摘要:
The invention relates to certain low-molecular weight sulphated polysaccharide derivatives of marine native exopolysaccharides (EPSs) excreted by mesophilic marine bacteria from a deep hydrothermal environment, wherein said derivatives can be obtained by means of a method which comprises a step of free radical depolymerisation of said native EPSs followed by a step of sulphating the resulting depolymerised derivatives. The present invention further relates to the use of said low-molecular weight sulphated polysaccharide derivatives as a wound-healing agent, particularly for preparing pharmaceutical compositions suitable for treating or preventing diseases of the connective tissues and particularly skin and gum tissues. The figure demonstrates how polysaccharide derivative GY 785 DRS according to the invention can stimulate fibroblast proliferation in latticed or reconstructed connective tissues at a concentration of 10 μg (m) g/ml.
摘要:
The invention relates to the use of a polysaccharide which is excreted by the Vibrio diabolicus species for the regeneration and protection of the non-mineralised connective tissue of the periodontium.
摘要:
The present invention relates to the use of fucans with a weight-average molar mass of between 5000 and 100 000 g/mol, for the purposes of bone grafting, engineering and regeneration.
摘要:
The invention relates to certain low-molecular weight sulphated polysaccharide derivatives of marine native exopolysaccharides (EPSs) excreted by mesophilic marine bacteria from a deep hydrothermal environment, wherein said derivatives can be obtained by means of a method which comprises a step of free radical depolymerisation of said native EPSs followed by a step of sulphating the resulting depolymerised derivatives. The present invention further relates to the use of said low-molecular weight sulphated polysaccharide derivatives as a wound-healing agent, particularly for preparing pharmaceutical compositions suitable for treating or preventing diseases of the connective tissues and particularly skin and gum tissues. The figure demonstrates how polysaccharide derivative GY 785 DRS according to the invention can stimulate fibroblast proliferation in latticed or reconstructed connective tissues at a concentration of 10 μg(m)g/ml.
摘要:
The invention concerns the use of fucanes for obtaining medicines for modulating metalloprotease and inhibiting leukocytic elastase. Said medicines help activate collagen synthesis inhibit proliferation of gingival fibroblasts, and activate proliferation of dermal fibroblasts. They are useful in particular for treating periodontal pathologies and dermal lesions.
摘要:
A method for obtaining sulphated polysaccharides using the free radical depolymerization of a fucan from Phaeophyceae in the presence of a metal catalyst and of hydrogen peroxide is described. The method of the invention provides polysaccharide fractions with a molecular weight of 10,000 g/mol or less, with anticoagulant properties.
摘要:
The invention provides chondrogenic differentiation media comprising chondrogenic growth factors and low-molecular-weight sulfated polysaccharide derivatives of marine native exopolysaccharides (EPS) excreted by mesophilic marine bacteria from deep-sea hydrothermal environments. The invention relates to methods for inducing chondrogenic differentiation in pluripotent or multipotent cells, to cartilage tissues obtained by such methods, and to the use of such cartilage tissues for therapeutic purposes.
摘要:
The present invention relates to the use of fucans with a weight-average molar mass of between 5000 and 100 000 g/mol, for the purposes of bone grafting, engineering and regeneration.
摘要:
The invention relates to the use of certain low-molecular weight highly sulphated polysaccharide derivatives obtained from a bacterial polysaccharide for preparing a pharmaceutical composition suitable for modulating angiogenesis, particularly for use in accelerating vascular endothelial repair with a low haemorrhage risk in the event of thrombotic injuries.