Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a support structure, an actuator coupled to at least one of the platen or the support structure to create relative motion there between along a first axis parallel to the top surface, a plurality of printheads mounted on the support structure, and an energy source. Each printhead includes a dispenser to deliver a plurality of successive layers of feed material over the platen. The printheads are spaced along a second axis perpendicular to the first axis such that during motion along the first axis the plurality of printheads dispense feed material in a plurality of parallel swaths along the first axis. The energy source is configured to fuse at least a portion of the feed material.
Abstract:
An apparatus includes a platen and a dispensing system overlying the platen. The dispensing system includes a powder source. The dispensing system further includes a powder conveyor extending over the top surface of the platen, rings arranged coaxially along a longitudinal axis of the powder conveyor, and a cap plate extending along a length of the tube. The powder conveyor is configured to receive powder from the powder source. The powder conveyor is configured to move the powder. The rings form a tube surrounding the powder conveyor to contain the powder. Each concentric ring includes a ring opening. Each ring is configured to be independently rotatable. The cap plate includes a cap plate opening. The powder is dispensed from the tube through the ring opening and the cap plate opening when the ring opening and the cap plate opening are aligned.
Abstract:
A module for an additive manufacturing system includes a frame configured to be removably mounted on a movable support, a dispenser configured to deliver a layer of particles on a platen that is separate from the frame or an underlying layer on the platen, a heat source configured to heat the layer of particles to a temperature below a temperature at which the particles fuse, and an energy source configured to fuse the particles. The dispenser, heat source and energy source are positioned on the frame in order along a first axis, and the dispenser, heat source and energy source are fixed to the frame such that the frame, dispenser, heat source and energy source can be mounted and dismounted as a single unit from the support.
Abstract:
Additive manufacturing includes successively forming a plurality of layers on a support. Depositing a layer from the plurality of layers includes dispensing first particles, selectively dispensing second particles in selected regions corresponding to a surface of the object, and fusing at least a portion of the layer. The layer has the first particles throughout and the second particles in the selected regions. Alternatively or in addition, forming the plurality of layers includes depositing multiple groups of layers. Depositing a group of layers includes, for each layer in the group of layers dispensing a feed material to provide the layer, and after dispensing the feed material and before dispensing a subsequent layer fusing a selected portion of the layer. After all layers in the group of layers are dispensed, a volume of the group of layers that extends through all the layers in the group of layers is fused.
Abstract:
A digital printing system includes components to apply an ink layer on a substrate, and a deinking applicator. The deinking applicator includes a reservoir and a roller. The reservoir is to contain a deinking solution. The roller is positioned to receive the deinking solution from the reservoir and to coat the substrate with the deinking solution prior to the application of the ink layer or subsequent to the application of the ink layer.
Abstract:
A semiconductor processing system includes a vacuum chamber, a gas source configured to supply a gas to the chamber, a platen having a top surface in the chamber to support a substrate, the platen including a conductive plate, a robot to transport the substrate onto and off of the platen, a first plurality of lamps disposed below the top surface of the platen to heat the platen, and an RF power source to generate a plasma in the chamber above the platen.
Abstract:
The present disclosure provides for compositions, methods, and systems directed towards a liquid electrophotographic ink comprising a carrier fluid, a pigment, a first resin, and a stable cross-linkable resin that is solvated or swellable with the carrier fluid, where the stable cross-linkable resin does not undergo cross-linking until a temperature of at least 110° C. and, once cross-linked, does not melt until a temperature of at least 300° C.
Abstract:
Techniques to determine concentration parameters of conductive liquid electrophoretic (LEP) inks are illustrated herein. In an example, a layer of conductive LEP ink is formed on a developer roller using electrostatic forces acting on the conductive LEP ink. A current is generated in response to a voltage between a measurement electrode and a developer roller. The current flows through the conductive LEP ink layer.
Abstract:
The present disclosure is drawn toward compositions, systems, and methods for printing of three-dimensional objects. In one embodiment, a liquid inkjettable material for 3-dimensional printing can comprise from 0.1 wt % to 10 wt % of a pigment, from 10 wt % to 90 wt % of a UV-curable polymer, and from 0.1 wt % to 70 wt % of a polymeric filler. Additionally, the liquid inkjettable material can be jettable from piezo electric inkjet printer nozzles and has acceptable decap performance measured by jetting a normal 50 picoliter ink drop within 10 electric firing pulses after the piezo electric inkjet printer nozzles have been fired and have been subsequently rested for 24 hours.
Abstract:
The present disclosure provides inks, systems, and methods directed towards dispersed pigments. In one embodiment, an electrophotographic ink can comprise an aliphatic solvent and a pigment having a surface comprising carbonyl groups stabilized by an amine dispersant having the structure: R1R2N[(CH2)nNR5]m(CH2)pNR3R4, where R1, R3, R4, and R5 are independently selected from the group of H; COR6; COOR6; CONHR6; linear or branched, substituted or unsubstituted, alkyl; linear or branched, substituted or unsubstituted, aryl; and combinations thereof; R2 is an aliphatic polymer chain; R6 is selected from the group of H; linear or branched, substituted or unsubstituted, alkyl; linear or branched, substituted or unsubstituted, aryl; and combinations thereof; m is from 0 to 200; n is from 1 to 20; and p is from 1 to 20; where the electrophotographic ink has a low field conductivity of less than 200 pS/cm and a viscosity from about 0.5 to about 40 cps.