Abstract:
Disclosed is a fine particle dispersion which is superior in dispersibility and storage stability. Specifically disclosed is a fine particle dispersion in which a fine particle (P) comprised of one type or not less than two types of a metal, an alloy, and/or a metallic compound, having a mean particle diameter of between 1 nm and 150 nm for primary particles thereof, with being coated at least a part of a surface thereof with a polymer dispersing agent (D), is dispersed in a mixed organic solvent. This fine particle dispersion is characterized in that a weight ratio of (D/P) between the polymer dispersing agent (D) coating the surface of the fine particle (P) and the fine particles (P) in the dispersion is between 0.001 and 10, and the mixed organic solvent is one of: (i) a mixed organic solvent which contains an organic solvent (A) as between 50% and 95% by volume having an amide group, and a low boiling point organic solvent (B) as between 5% and 50% by volume having a boiling point of between 20° C. and 100° C. at a normal pressure; (ii) a mixed organic solvent which contains the organic solvent (A) as between 50% and 95% by volume having the amide group, and an organic solvent (C) as between 5% and 50% by volume having a boiling point of higher than 100° C. at a normal pressure and comprised of an alcohol and/or a polyhydric alcohol having one or not less than two hydroxyl groups in a molecule thereof; or (iii) a mixed organic solvent which contains the organic solvent (A) as between 50% and 94% by volume having the amide group, the low boiling point organic solvent (B) as between 5% and 49% by volume having the boiling point of between 20° C. and 100° C. at the normal pressure, and the organic solvent (C) as between 1% and 45% by volume having the boiling point of higher than 100° C. at the normal pressure and comprised of the alcohol and/or the polyhydric alcohol having the one or not less than the two hydroxyl groups in the molecule thereof.
Abstract:
Disclosed is a method for producing a fine particle dispersion such as a dispersion of metal fine particles which is superior in dispersibility and storage stability. Specifically disclosed is a method for producing a fine particle dispersion wherein fine particles of a metal or the like, having a mean particle diameter of between 1 nm and 150 nm for primary particles, are dispersed in an organic solvent. This method for producing a fine particle dispersion is characterized by comprising the steps of: reducing a metal ion by liquid phase reduction in an aqueous solution wherein the metal ion and a polymer dispersing agent are dissolved, thereby forming a fine particle dispersion aqueous solution wherein fine particles having a mean particle diameter of between 1 nm and 150 nm for the primary particles and dispersed with being coated by the polymer dispersing agent (Process 1); adding an aggregation accelerator into the fine particle dispersion aqueous solution, the resulting solution is agitated for agglomerating or precipitating the fine particles, and then the agglomerated or precipitated fine particles are separated from the aqueous solution, thereby obtaining fine particles comprised of one type or not less than two types of a metal, an alloy and a metallic compound (Process 2); and re-dispersing the thus-obtained fine particles into an organic solvent or the like which contains an organic solvent (A) as between 25% and 70% by volume having an amide group, a low boiling point organic solvent (B) as between 5% and 25% by volume having a boiling point of between 20° C. and 100° C. at a normal pressure, and an organic solvent (C) as between 5% and 70% by volume having a boiling point of higher than 100° C. at a normal pressure and comprised of an alcohol and/or a polyhydric alcohol having one or not less than two hydroxyl groups in a molecule thereof (Process 3).
Abstract:
An output data correction device is provided for an A/D conversion circuit that achieves high precision over input voltage domains. An estimated maximum input ranging from 0 V to 5 V is divided into domains. A comparison circuit decides to which of the domains a voltage Vin input to a pulse phase-difference encoding circuit belongs. Control logic and a digital analog controller (DAC) select and transmit reference voltages associated with each of the domains. When each of the reference voltages is selected, a quadratic functional equation is computed and determined. A graph of the function passes coordinate points representing the reference voltages in a coordinate system with reference voltages and A/D-converted data values as dimensions. When each input voltage is selected, the A/D-converted digital data is corrected using the quadratic functional equation associated with the domain to which the input voltage Vin is decided to belong.
Abstract:
The A/D converter has first and second PPDC circuits (pulse-phase-difference coding circuits). The first PPDC circuit performs A/D conversions on the reference voltage and on the voltage signal amplified by an amplifier in an alternating sequence, the amplifier using the reference voltage as a potential base thereof. The second PPDC circuit performs A/D conversions always on the reference voltage. The A/D-converted data set of the voltage signal outputted from the first PPDC circuit is corrected depending on the difference between the A/D-converted data set of the reference voltage outputted from the second PPDC circuit when the first PPDC circuit A/D-converts the reference voltage and the A/D-converted data set of the reference voltage outputted from the second PPDC circuit when the first PPDC circuit A/D-converts the voltage signal.
Abstract:
In an A/D conversion device, one level shift circuit shifts an input voltage to the low potential side by Vt1, and another level shift circuit shifts the input voltage to the high potential side by Vt2. A multiplexer selects either of the shifted voltages to an A/D converter. In a correction mode, a correction data holding circuit holds values of reference voltages that are also A/D converted after being passed through the one level shift circuit and values of reference voltages that are A/D converted by being passed through the other level shift circuit, as correction values. A correction control circuit corrects the A/D converted value using the correction values.
Abstract:
A rotation position detecting device includes an angular signal generator which generates pulses the cycle period of which is even or equal when a rotating object rotates at a constant rotation speed and a non-pulse portion which corresponds to a reference position, an up-down command circuit for generating an up-down command signal the frequency of which is divided to a half of the frequency of the angular signal, a pair of first counters for counting up or down the clock signal when the up-down command signal changes from a first level to a second level to reset and subsequently counting down the clock signal when the up-down command signal changes from the second level to the first level, a pair of processing circuits for providing a first and second reference values, a pair of counters which generates detection signals when the counted number of the counters becomes smaller than the first or the second reference value.
Abstract:
A rotation position detecting device includes an angular signal generator which generates pulses the cycle period of which is even or equal when a rotating object rotates at a constant rotation speed and a non-pulse portion which corresponds to a reference position, an up-down command circuit for generating an up-down command signal the frequency of which is divided to a half of the frequency of the angular signal, a pair of first counters for counting up or down the clock signal when the up-down command signal changes from a first level to a second level to reset and subsequently counting down the clock signal when the up-down command signal changes from the second level to the first level, a pair of processing circuits for providing a first and second reference values, a pair of counters which generates detection signals when the counted number of the counters becomes smaller than the first or the second reference value.
Abstract:
In a memory controller, a serial data including an instruction bit train with addition of a start bit, a clock signal, a chip enable signal, and a reset signal are inputted. During the active period in which the chip enable signal is being inputted, the serial data is stored depending on the clock signal and an enabling signal is generated based on the end timing of active period. Thereby, memory access is executed depending on contents of the instruction bit train. However, when the relevant apparatus is reset during the active period, generation of the enabling signal based on the end timing of the active period is inhibited.
Abstract:
A direct-current power supply circuit, incorporated in an IC card, includes a coil for receiving an amplitude-modulated signal from an external device through electromagnetic induction. A full-wave rectifying circuit rectifies the amplitude-modulated signal received by the coil. The rectified output signal is used to charge a smoothing capacitor. A clamp circuit controls the terminal voltage of the smoothing capacitor to a predetermined level so as to produce a power supply voltage. The clamp circuit controls an output transistor to stabilize the power supply voltage to a constant level. Furthermore, the direct-current power supply circuit includes a short-circuit preventing circuit to forcibly turn off the output transistor when the electric potential difference between both ends of the coil is smaller than a predetermined value, thereby preventing the power supply voltage from suddenly decreasing due to delay of operation of the circuit elements when the coil output becomes zero due to amplitude modulation.
Abstract:
An input voltage Va and a threshold voltage Vc are compared in a comparator 21 to shaping the waveform of a sensor signal. The period of the output signal of comparator 21 is measured by a period measuring circuit 4. A stepped waveform voltage generating circuit 5 generates a stepped waveform voltage based on the measured period. The stepped waveform voltage is converted into corresponding current in a V-I conversion circuit 6. The current of V-I conversion circuit 6 is supplied to a resistance 23d or 23e via an analog switch 22a or 22b which turns on or off in response to the operation of comparator 21, thereby applying a stepped offset voltage to input voltage Va threshold voltage Vc to perform the hysteresis operation.