Abstract:
A safe and stable production method of a hydrogenated polymer having high transparency, which is a production method of a hydrogenated polymer by hydrogenating aromatic rings of an aromatic vinyl compound-(meth)acrylate copolymer, in which (1) a solvent solution of the copolymer is added to a reactor, which has a solvent and a supported palladium catalyst charged therein, under a hydrogen atmosphere at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction, and then such an operation is performed repeatedly that (2) a hydrogenated polymer is obtained from 30 to 90% by mass of the resulting reaction mixed solution, and a fresh solvent solution of the copolymer is added to the reactor, in which the residual reaction mixed solution is left, or to which the residual reaction mixed solution is returned, at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction.
Abstract:
A safe and stable production method of a hydrogenated polymer having high transparency, which is a production method of a hydrogenated polymer by hydrogenating aromatic rings of an aromatic vinyl compound-(meth)acrylate copolymer, in which (1) a solvent solution of the copolymer is added to a reactor, which has a solvent and a supported palladium catalyst charged therein, under a hydrogen atmosphere at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction, and then such an operation is performed repeatedly that (2) a hydrogenated polymer is obtained from 30 to 90% by mass of the resulting reaction mixed solution, and a fresh solvent solution of the copolymer is added to the reactor, in which the residual reaction mixed solution is left, or to which the residual reaction mixed solution is returned, at a rate of from 0.01 to 15 g/hour in terms of the copolymer per unit mass (g) of the supported palladium catalyst, thereby performing hydrogenation reaction.
Abstract:
On a silicon substrate 1 is provided a silicon oxide film 2, on which a polycrystalline silicon film 3 is formed by a low pressure CVD method at a monosilane partial pressure of no more than 10 Pa and a film formation temperature of no lower than 600° C. The polycrystalline silicon film is doped with an impurity such as phosphorus in a concentration of 1×1020 atoms/cm3 to 1×1021 atoms/cm3 to form a phosphosilicate glass film 6, and after removing it, the polycrystalline silicon film is thermally oxidized in an oxidative atmosphere to form a dielectric film 5 on the surface. A polycrystalline silicon film 4 is formed on the dielectric film 5, which is treated as the oriented polycrystalline silicon film 3a to form an oriented polycrystalline silicon film 4a. The oriented polycrystalline silicon film 4a as an upper electrode and the oriented polycrystalline silicon film 3a as a lower electrode are wired to obtain a semiconductor device having a capacitor. Further, a thin film transistor of a high dielectric strength can be produced in a short time on the polycrystalline silicon which is oriented in a short time.
Abstract translation:在硅基板1上设置氧化硅膜2,通过低压CVD法在不超过10Pa的单硅烷分压和不低于600°的成膜温度下形成多晶硅膜3 C.多晶硅膜掺杂浓度为1×10 20原子/ cm 3至1×10 21原子/ cm 3的磷等杂质,形成磷硅玻璃膜6,去除后,多晶硅膜氧化成氧化 在表面形成电介质膜5。 在作为取向多晶硅膜3a的电介质膜5上形成多晶硅膜4,形成取向多晶硅膜4a。 将作为上电极的定向多晶硅膜4a和作为下电极的取向多晶硅膜3a布线以获得具有电容器的半导体器件。 此外,可以在短时间内在短时间取向的多晶硅上制造高介电强度的薄膜晶体管。
Abstract:
A process for producing a hydrogenated polymer, which includes a step of hydrogenating aromatic rings of an aromatic vinyl compound—(meth)acrylate copolymer. In the process, the copolymer having a ratio, A/B, of from 0.25 to 4.0 (A is a molar number of constitutional units derived from the (meth)acrylate monomer, and B is a molar number of constitutional units derived from the aromatic vinyl monomer) is hydrogenated in a solvent in the presence of a catalyst which is composed of zirconium oxide supporting palladium. By the process, a highly transparent, hydrogenated polymer is stably and rapidly produced for a long period of time or repeatedly.
Abstract:
In the production of a nuclear-hydrogenated polymer, the hydrogenation of an aromatic vinyl compound—(meth)acrylate copolymer is conducted in a mixed solvent comprising an ester compound and an alcohol compound in the presence of a catalyst. By this method, a highly transparent nuclear-hydrogenated polymer is produced safely, stably and quickly, even when the degree of nuclear-hydrogenation is low.
Abstract:
In order to suppress occurrence of a random pattern signal is suppressed without the use of a sideband signal in a long distance data transmission exceeding that defined in a PCIe interface specification, provided is a computer system, including a first component having a transmitting unit which transmits a control signal, a second component having a receiving unit which receives the control signal, a transmission path which connects the first component and the second component along which a signal is transmitted and received, wherein: in case of the transmitting unit of the first component transmits a ternary signal with three states of 0/1/Idle to the receiving unit of the second component, the transmitting unit of the first component substitutes a combination of signals representing 0/1 for a signal representing the Idle state, and transmits the substituted signals instead of the ternary signal to the receiving unit of the second component.
Abstract:
On a silicon substrate 1 is provided a silicon oxide film 2, on which a polycrystalline silicon film 3 is formed by a low pressure CVD method at a monosilane partial pressure of no more than 10 Pa and a film formation temperature of no lower than 600.degree. C. The polycrystalline silicon film is doped with an impurity such as phosphorus in a concentration of 1.times.10.sup.20 atoms/cm.sup.3 to 1.times.10.sup.21 atoms/cm.sup.3 to form a phosphosilicate glass film 6, and after removing it, the polycrystalline silicon film is thermally oxidized in an oxidative atmosphere to form a dielectric film 5 on the surface. A polycrystalline silicon film 4 is formed on the dielectric film 5, which is treated as the oriented polycrystalline silicon film 3a to form an oriented polycrystalline silicon film 4a. The oriented polycrystalline silicon film 4a as an upper electrode and the oriented polycrystalline silicon film 3a as a lower electrode are wired to obtain a semiconductor device having a capacitor. Further, a thin film transistor of a high dielectric strength can be produced in a short time on the polycrystalline silicon which is oriented in a short time.
Abstract translation:在硅基板1上设置氧化硅膜2,通过低压CVD法在不超过10Pa的单硅烷分压和不低于600°的成膜温度下形成多晶硅膜3 C.多晶硅膜掺杂浓度为1×10 20原子/ cm 3至1×10 21原子/ cm 3的磷等杂质,形成磷硅玻璃膜6,去除后,多晶硅膜氧化成氧化 在表面形成电介质膜5。 在作为取向多晶硅膜3a的电介质膜5上形成多晶硅膜4,形成取向多晶硅膜4a。 将作为上电极的定向多晶硅膜4a和作为下电极的取向多晶硅膜3a布线以获得具有电容器的半导体器件。 此外,可以在短时间内在短时间取向的多晶硅上制造高介电强度的薄膜晶体管。
Abstract:
In the production of a nuclear-hydrogenated polymer, the hydrogenation of an aromatic vinyl compound—(meth)acrylate copolymer is conducted in a mixed solvent comprising an ester compound and an alcohol compound in the presence of a catalyst. By this method, a highly transparent nuclear-hydrogenated polymer is produced safely, stably and quickly, even when the degree of nuclear-hydrogenation is low.
Abstract:
A process for producing a hydrogenated polymer, which includes a step of hydrogenating aromatic rings of an aromatic vinyl compound—(meth)acrylate copolymer. In the process, the copolymer having a ratio, A/B, of from 0.25 to 4.0 (A is a molar number of constitutional units derived from the (meth)acrylate monomer, and B is a molar number of constitutional units derived from the aromatic vinyl monomer) is hydrogenated in a solvent in the presence of a catalyst which is composed of zirconium oxide supporting palladium. By the process, a highly transparent, hydrogenated polymer is stably and rapidly produced for a long period of time or repeatedly.