摘要:
Circuitry and methods are provided for an LVDS-like transmitter that may be able to DC couple to a receiver having a CML termination scheme. Replacing the common mode voltage source of an LVDS transmitter with a resistive pulldown to ground may allow the transmitter to interface in a DC coupled fashion with a CML receiver. Further, the resistive pulldown may be programmable. This LVDS-like transmitter may be able to support a wider customer base by allowing it to DC couple to a wider range of termination voltage levels, such as CML termination voltage levels.
摘要:
Circuitry for distributing clock signals (e.g., reference clock signals) among a plurality of blocks of circuitry. Each block may include reference clock source circuitry and reference clock utilization circuitry. Each block also preferably includes an identical or substantially identical module of clock signal distribution circuitry that can (1) accept a signal from the source circuitry in that block, (2) apply any of several clock signals to the utilization circuitry in that block, and (3) connect to the similar module(s) of one or more adjacent blocks.
摘要:
Enhanced passgate structures for use in low-voltage systems are presented in which the operational speed of the passgate structures is maximized, while minimizing leakage current when the structure is turned “OFF.” In one arrangement, the VT of the pass-gate structures is increased relative to the VT of other transistors fabricated according to a particular process dimension. In addition, a passgate activation voltage is applied to the passgate structures such that the passgate activation voltage is higher in voltage than a nominal voltage being supplied to circuitry other than the passgate structures.
摘要翻译:提出了在低压系统中使用的增强型门控结构,其中通道结构的操作速度最大化,同时使结构“OFF”时的漏电流最小化。 在一种布置中,栅极结构的栅极相对于根据特定工艺尺寸制造的其它晶体管的V IN T T T T增加。 此外,通道激活电压被施加到通道结构,使得通电门激活电压的电压高于提供给非门电路结构以外的电路的标称电压。
摘要:
An integrated circuit like a programmable logic device (“PLD”) includes multiple channels of data communication circuitry. Circuitry is provided for selectively sharing signals (e.g., control-type signals) among these channels in groupings of various size so that the device can better support communication protocols that require various numbers of channels (e.g., one channel operating relatively independently, four channels working together, eight channels working together, etc.). The signals shared may include a clock signal, a FIFO write enable signal, a FIFO read enable signal, or the like. The circuit arrangements are preferably modular (i.e., the same or substantially the same from one channel to the next and/or from one group of channels to the next) to facilitate such things as circuit design and verification.
摘要:
Deserializer circuitry for high-speed serial data receiver circuitry on a programmable logic device (“PLD”) or the like includes circuitry for converting serial data to parallel data having any of several data widths. The circuitry can also operate at any frequency in a wide range of frequencies. The circuitry is configurable/re-configurable in various respects, at least some of which configuration/re-configuration can be dynamically controlled (i.e., during user-mode operation of the PLD).
摘要:
A PLD includes at least one IP block or circuit, and at least one I/O block or circuit. The performance of the at least one IP block is adjusted in order to meet at least one performance characteristic by changing a supply level of the at least one IP block, by adjusting at least one body bias level of the IP block, or both. The performance of the at least one I/O block is adjusted by changing a supply level of the at least one I/O block, by adjusting at least one body bias level of the I/O block, or both.
摘要:
The disclosed invention is a technology for producing a recovered clock signal using a multi-mode clock data recovery (CDR) circuit that accommodates a flexible range operating frequencies F and consecutive identical digit requirements CID. In a first mode of operation, a controlled oscillator produces the recovered clock signal, and in a second mode of operation, a phase interpolator produces the recovered clock signal. The multi-mode CDR circuit operates in the first mode if (CID/F) is less than a threshold time value and in the second mode if (CID/F) is greater than the threshold time value.