Abstract:
A three-part epoxy grout composition comprises a liquid epoxy blend, a liquid hardener, and a graded particulate aggregate, wherein the dry aggregate particles are pretreated with an applied adhesion promoter in an amount of 0.01 to 5% by weight. The volume of pretreated aggregate particles, when mixed with the epoxy blend and the hardener, comprises at least 70% by volume of the cured grout. Pretreatment of the aggregate by coating with adhesion promoter allows more efficient use of chemicals along with improved strength. Related methods are also disclosed.
Abstract:
A gate-latching assembly is configured for utilization with a gate assembly. The gate assembly includes a stationary gate post configured to be mounted to, and to extend from, a working surface once the stationary gate post is mounted to the working surface, and in which the gate assembly also includes a movable gate door configured to be movable relative to the stationary gate post. There is provided a combination for utilization with the gate assembly. The combination includes any one of (A) a striker base assembly and a striker member, (B) a latch base assembly and a latch assembly, and/or (C) a striker base assembly, a striker member, a latch base assembly and a latch assembly.
Abstract:
A bar of soap is made so as to be more easily held without slipping by providing one or more finger-width slots along a side of the bar of soap.
Abstract:
An apparatus (100) includes a canine harness (101) with a radio frequency inhibitor (400). A leash (1002) can serve as a control device (102). The leash can selectively mechanically couple to the canine harness and electrically couple an actuator (114) to the radio frequency inhibitor. When the actuator is actuated, the radio frequency inhibitor is to emit one or more radio frequency inhibition signals (405), which can include the emission of all programmed signals simultaneously. Radio frequency inhibitors can also be integrated into clothing or armor (1802), as well as equipment (1901). The radio frequency inhibitor can interrupt, suppress, or halt electronic detonation communications to an explosive device.
Abstract:
A hand mixer includes an outer casing and a mixing element coupled to an electric motor. The hand mixer includes a cord guide that is configured to pivot about a pivot axis, an electrical cord extending through the cord guide, and a retaining clip that engages the cord guide to couple the cord guide to the outer casing. The hand mixer also includes a locking mechanism operable to retain the cord guide in a first position about the pivot axis.
Abstract:
The invention relates to a single crystal CVD diamond material, wherein the extended defect density as characterized by X-ray topography is less than 400/cm2 over an area of greater than 0.014 cm2. The invention further relates to a method for producing a CVD single crystal diamond material according to any preceding claim comprising the step of selecting a substrate on which to grow the CVD single crystal diamond, wherein the substrate has at least one of a density of extended defects as characterized by X-ray topography of less than 400/cm2 over an area greater than 0.014 cm2; an optical isotropy of less than 1×10-5 over a volume greater than 0.1 mm3; and a FWHM X-ray rocking curve width for the (004) reflection of less than 20 arc seconds.
Abstract translation:本发明涉及单晶CVD金刚石材料,其中通过X射线形貌表征的扩展缺陷密度在大于0.014cm 2的面积上小于400 / cm 2。 本发明还涉及根据前述权利要求中任一项所述的CVD单晶金刚石材料的制造方法,该方法包括选择在其上生长所述CVD单晶金刚石的基板的步骤,其中所述基板具有至少一个扩展缺陷密度 其特征在于在大于0.014cm 2的面积上的小于400 / cm 2的X射线形貌; 在大于0.1mm 3的体积下的光学各向同性小于1×10-5; 以及(004)反射小于20弧秒的FWHM X射线摇摆曲线宽度。
Abstract:
A method for making a compartmentalized sealant strip and barrier assembly 10 has the steps of co-extruding a barrier strip 9 of non-sealant elastomeric material with a plurality of projecting linear extending walls 9c and a sealant strip 11 wherein the sealant strip 11 is formed on one side of the barrier strip 9 filling the space between the plurality of projecting walls 9c to form a plurality of linearly extending rows of sealant 11 across the transverse width of the co-extrusion to form the compartmentalized sealant strip and barrier assembly 10.
Abstract:
Systems for injecting fluids and/or other materials into a targeted anatomical location, in particular, an intra-articular space, include a handpiece assembly having a proximal end and a distal end, a needle extending from the distal end of the handpiece assembly, a fluid delivery module comprising a cassette and a fluid transfer device. A conduit is generally configured to place the fluid delivery module in fluid communication with the handpiece assembly. Medications, formulations and/or other fluids or materials contained within vials that are secured to the fluid delivery module can be selectively delivered into an anatomy through a needle located at the distal end of the handpiece assembly. In some embodiments, ultrasound or other imaging technologies can be used to locate a joint or other targeted anatomical location.