Abstract:
An infrared sensor package includes a housing member, which includes an upper-surface section provided with a transmission member which transmits infrared radiation and a lower-surface section and whose inner space is vacuum-sealed, a plate-like heater member which is disposed within the inner space of the housing member and generates heat, an infrared detection element which is fixed onto the heater member and detects the infrared radiation which is transmitted by the transmission member, and a heat-insulating member which has a low thermal conductivity and a smaller cross-sectional area than that of the heater member, and supports the heater member while being fixed onto the lower-surface section.
Abstract:
A vanadium oxide film is formed on an interlayer insulating layer, and a silicon oxide film and a silicon nitride film are formed on the vanadium oxide film in this order. With a resist pattern used as a mask, the silicon nitride film is patterned. Then, the resist pattern is removed using a stripping solution or oxygen plasma ashing. Next, with the patterned silicon nitride film used as a mask, the silicon oxide film and the vanadium oxide film are etched to form a resistor film of vanadium oxide.
Abstract:
In a semiconductor integrated circuit device, a sheet-like temperature monitor member of vanadium oxide is provided, whose one end is connected to one via while the other end is connected to another via. A sheet-like thermal conducting layer of aluminum is provided below the temperature monitor member. A region equal to or greater than a half of the entire temperature monitor member overlies the thermal conducting layer in a plan view.
Abstract:
An infrared absorption film (first through third infrared absorption films) that constitutes a photoreceptor of a thermal-type infrared detection element comprises a laminate film in which a film composed of a novel SiCO material having high absorption on the short-wavelength end (approximately 8 to 10 μm) of the waveband (atmospheric window) from 8 to 14 μm is combined with a film composed of SiO, SiN, SiC, SiON, SiCN, or another material having high absorption on the long-wavelength end (approximately 10 to 14 μm) of the abovementioned waveband. Infrared rays on the short-wavelength end that could not be effectively utilized by the conventional thermal infrared detection element can thereby be absorbed by the SiCO membrane, infrared rays throughout the abovementioned waveband can be effectively utilized, and the sensitivity of the thermal infrared detection element can be enhanced.
Abstract:
A metal film made of titanium is formed on a surface of a wafer. Then, the metal film is subjected to a patterning process to selectively remove undesired portions to form a metal film on an outer area of the wafer and a lattice-patterned metal film on a pattern area of the wafer. The lattice-patterned metal film is formed on an area corresponding to scribe lines of devices to be arranged in a matrix on the wafer. Then, the metal films are connected to a ground. Subsequently, a vanadium oxide film is formed on the wafer using a sputtering process. Therefore, the vanadium oxide film is prevented from becoming charged at the time of deposition thereof on the wafer to suppress increasing of self bias potential and attain uniformity in resistance value of the vanadium oxide film.
Abstract:
An infrared sensor package includes a housing member, which includes an upper-surface section provided with a transmission member which transmits infrared radiation and a lower-surface section and whose inner space is vacuum-sealed, a plate-like heater member which is disposed within the inner space of the housing member and generates heat, an infrared detection element which is fixed onto the heater member and detects the infrared radiation which is transmitted by the transmission member, and a heat-insulating member which has a low thermal conductivity and a smaller cross-sectional area than that of the heater member, and supports the heater member while being fixed onto the lower-surface section.
Abstract:
In a temperature sensor section of a semiconductor integrated circuit device, wires of the topmost wiring layer of a multi-layer wiring structure are formed. A sheet-like temperature monitor element of vanadium oxide is provided between two of the wires in such a way as to cover the two wires. Accordingly, the temperature monitor element is connected between the two wires of an underlying wiring layer of the multi-layer wiring structure through two vias and the two wires of the topmost wiring layer.
Abstract:
In a temperature sensor section of a semiconductor integrated circuit device, first vias of tungsten are formed at the topmost layer of a multi-layer wiring layer and pads of titanium are provided on regions of the multi-layer wiring layer which covers the vias. An insulating layer is provided in such a way as to cover the multi-layer wiring layer and the pads, second vias are so formed as to reach the pads. Vanadium oxide is buried in the second vias by reactive sputtering, and a temperature monitor part of vanadium oxide is provided in such a way as to connect the second vias each other. Accordingly, the temperature monitor part is connected between the two wires.
Abstract:
Crystal phase V2O3 with x=1.5 in VOx is prepared. Such a lower specific resistance than a desired one as a starting film quality is modified to the final desired specific resistance by heating under an oxidizing atmosphere. A protective film for a bolometer material is formed by physical vapor deposition.
Abstract translation:制备VO x中x = 1.5的晶相V 2 O 3。 通过在氧化气氛下加热,比作为起始膜质量的所需要的这种较低的电阻率被修饰为最终期望的电阻率。 通过物理气相沉积形成测辐射热量计材料的保护膜。
Abstract:
There is provided a method of carrying out plasma-enhanced etching of a vanadium oxide film, including the steps of (a) depositing one of a resist film and an insulating film on a vanadium oxide film, (b) patterning the one of a resist film and an insulating film to thereby form a mask, and (c) carrying out plasma-enhanced etching of a vanadium oxide film through the use of an etching gas containing a fluoride gas at a volume ratio of 10% or greater, which fluoride having fluorine (F) atoms by six or greater. The method raises an etching ratio of a vanadium oxide film to an underlying insulating layer, resulting in that it is possible to prevent the underlying insulating layer from being etched together, when the vanadium oxide film is etched.