Abstract:
A hydrogen production system (X1) according to the present invention includes a reforming apparatus (Y1) having a vaporizer (1) and a reforming reactor (2), and a PSA apparatus (5). In the vaporizer (1) a mixed material (hydrocarbon-based material, water, and oxygen) is heated and vaporized. In the reforming reactor (2), steam reforming reaction and partial oxidation reaction of the hydrocarbon-based material take place at a time, so that reformed gas (containing hydrogen) is led out from the vaporized mixed material. In the PSA apparatus (5), the reformed gas is introduced into an adsorption tower loaded with an adsorbing agent, so that an unnecessary component in the gas is adsorbed by the adsorbing agent and hence hydrogen-rich gas is led out of the tower, while the unnecessary component is desorbed from the adsorbing agent, so that hydrogen-containing desorbed gas that contains the unnecessary component and hydrogen remaining in the tower is discharged out of the tower. The desorbed gas is burnt in the vaporizer (1), and combustion gas generated by burning the desorbed gas is utilized as a heat source to heat the mixed material.
Abstract:
The present invention is a gas separation method using a plurality of adsorption columns packed with an adsorbent. A cycle including a series of steps (adsorption, first pressure reduction, second pressure reduction, desorption, scrubbing, and repressurization) is repeated in each adsorption column. In the adsorption step, a gas mixture (G1) is introduced into a column (A) so as to cause the adsorbent to adsorb unnecessary components, and a product gas (G2) is led outside of the column (FIG. 3A). In the first pressure reduction step, the internal pressure of the column (A) is reduced by lead-out of a gas (G3) (FIG. 4A). In the second pressure reduction step, the internal pressure of the column (A) is further reduced by lead-out of the gas (FIG. 4B). In the desorption step, the unnecessary components are desorbed from the adsorbent and purged from the column (A) (FIG. 4C). In the scrubbing step, introduction of the gas (G3) and purging of the gas (G4) are performed simultaneously (FIG. 5A). In the repressurizing step, the internal pressure of the column (A) is raised by introducing the gas (G3) (FIG. 5B). The gas (G3) that is led out from the column (A) during the first pressure reduction step is introduced into the column (C) during the scrubbing step (FIG. 4A), and the gas (G3) that is led out from the column (A) during the second pressure reduction step is introduced into the column (C) during the repressurizing step (FIG. 4B).
Abstract:
A method for treating drain in hydrogen production includes steps of gasifying in a gasifier (1), reforming in a reformer (2), gas-liquid separation in a gas-liquid separator (4), PSA gas separation in a PSA separator (5) and evaporation in a drain treatment unit (6). In the gasifying, a mixed material containing methanol is heated and gasified. In the reforming, reformed gas containing hydrogen is produced from the mixed material by reforming reaction of methanol. In the gas-liquid separation, a liquid component is separated from the reformed gas and discharged as drain. In the PSA gas separation, hydrogen-rich gas and offgas are extracted from the reformed gas by PSA separation using an adsorption tower. In the gasifying, the offgas is burned, and the mixed material is heated by using the combustion gas as heat source. In the evaporation, drain is evaporated using the combustion gas after heating the mixed material as heat source.
Abstract:
A method for treating drain in hydrogen production includes steps of gasifying in a gasifier (1), reforming in a reformer (2), gas-liquid separation in a gas-liquid separator (4), PSA gas separation in a PSA separator (5) and evaporation in a drain treatment unit (6). In the gasifying, a mixed material containing methanol is heated and gasified. In the reforming, reformed gas containing hydrogen is produced from the mixed material by reforming reaction of methanol. In the gas-liquid separation, a liquid component is separated from the reformed gas and discharged as drain. In the PSA gas separation, hydrogen-rich gas and offgas are extracted from the reformed gas by PSA separation using an adsorption tower. In the gasifying, the offgas is burned, and the mixed material is heated by using the combustion gas as heat source. In the evaporation, drain is evaporated using the combustion gas after heating the mixed material as heat source.
Abstract:
A hydrogen manufacturing system for performing offgas flow control includes: a vaporizer (1) for heating a material mixture containing a hydrocarbon material; a reforming reactor (2) for generating hydrogen-containing reformed gas by reforming reactions of the material; a PSA separator (5) for repeating a cycle of adsorption and desorption, where in the adsorption PSA separation is performed with an adsorption tower loaded with an adsorbent to adsorb unnecessary components in the reformed gas and extract hydrogen-enriched gas out of the tower, and in the desorption the offgas containing the unnecessary components from the adsorbent and remaining hydrogen is discharged from the tower; and a buffer tank (6) for holding the offgas before supplying to the vaporizer. The offgas flow supply from the tank (6) to the vaporizer is changed continuously over time when the cycle time is changed according to load change on the separator (5).
Abstract:
A catalyst composed of an organic phosphorus compound having a trivalent or pentavalent phosphorus atom and at least one carbon-phosphorus bonding or a combination of the organic phosphorus compound and a halogen atom-containing compound is effective for decarbonylation, that is, for releasing carbon monoxide from a compound containing a moiety of --CO--CO--O-- in its molecular structure.
Abstract:
A method is provided for separating hydrogen gas from a mixed gas obtained by autothermal reforming reaction of hydrocarbon-based material in which air is added. In this method, by pressure swing adsorption using adsorption towers (A-C) each filled with an adsorbent, a cycle is repeatedly performed, including an adsorption step of introducing the mixed gas into the adsorption tower to adsorb unnecessary gas contained in the mixed gas by the adsorbent to discharge product gas with high hydrogen gas concentration from the adsorption tower, and a desorption step of desorbing the unnecessary gas from the adsorbent to discharge the unnecessary gas from the adsorption tower. The adsorbent includes a 10 to 50% filling percentage of activated carbon-based first adsorbent (D) arranged in the adsorption tower at an upstream portion in the flow direction of the mixed gas and a 90 to 50% filling percentage of zeolite-based second adsorbent (E) arranged in the adsorption tower at a downstream portion in the flow direction.
Abstract:
The invention provides an off-gas feeding method that supplies the off-gas discharged from a plurality of adsorption towers (A, B, C) to an off-gas consumption unit (1), when performing a pressure swing adsorption process of repeating a cycle including a plurality of steps, to enrich and separate the target gas out of a gas mixture in the adsorption towers (A, B, C) loaded with an adsorbent. The method allows at least one of the plurality of adsorption towers (A, B, C) to discharge the off-gas, in all the steps included in the cycle, so as to continue to supply the off-gas to the off-gas consumption unit (1) without interruption.
Abstract:
The invention provides an off-gas feeding method that supplies the off-gas discharged from a plurality of adsorption towers (A, B, C) to an off-gas consumption unit (1), when performing a pressure swing adsorption process of repeating a cycle including a plurality of steps, to enrich and separate the target gas out of a gas mixture in the adsorption towers (A, B, C) loaded with an adsorbent. The method allows at least one of the plurality of adsorption towers (A, B, C) to discharge the off-gas, in all the steps included in the cycle, so as to continue to supply the off-gas to the off-gas consumption unit (1) without interruption.
Abstract:
A hydrogen manufacturing system for performing offgas flow control includes: a vaporizer (1) for heating a material mixture containing a hydrocarbon material; a reforming reactor (2) for generating hydrogen-containing reformed gas by reforming reactions of the material; a PSA separator (5) for repeating a cycle of adsorption and desorption, where in the adsorption PSA separation is performed with an adsorption tower loaded with an adsorbent to adsorb unnecessary components in the reformed gas and extract hydrogen-enriched gas out of the tower, and in the desorption the offgas containing the unnecessary components from the adsorbent and remaining hydrogen is discharged from the tower; and a buffer tank (6) for holding the offgas before supplying to the vaporizer. The offgas flow supply from the tank (6) to the vaporizer is changed continuously over time when the cycle time is changed according to load change on the separator (5).