Abstract:
The present disclosure provides augmented reality methods and systems where two or more component optical images are optically overlaid via one or more beam splitters to form composite optical images. In some embodiments a second component optical image is an electronic optical image (an image from an electronically controlled emission source) while the first component optical image is one of a physical optical image (an image of a physical object from which diffuse reflection occurs), an electronic optical image, an emission optical image (an image from a non-electronic source that emits radiation), or a hybrid optical image (composed of at least two of a physical optical image, and electronic optical image, or an emission optical image). In some embodiments the first and second component optical images are used to provide feedback concerning the quality of the overlaying and appropriate correction factors to improve the overlay quality.
Abstract:
Embodiments of the present disclosure provide augmented reality methods and systems where two or more component optical images are optically overlaid via the use of one or more beam splitters to become composite optical images wherein in some embodiments a second component optical image is an electronic optical image (an image from an electronically controlled emission source) while the first component optical image is one of a physical optical image (an image of a physical object from which diffuse reflection occurs), an electronic optical image, an emission optical image (an image from a non-electronic source that emits radiation), or a hybrid optical image (which composed of at least two of a physical optical image, and electronic optical image, or an emission optical image). In some embodiments the first and second component optical images are used to provide feedback concerning the quality of the overlaying and appropriate correction factors to improve the overlay quality.
Abstract:
According to certain general aspects, the present embodiments relate generally to identifying tissue, fluid and/or anatomical structures at the tip of a surgical tool. The determination of the tissue, fluid and/or anatomical structures that the tool is touching allows the inference of a position inside of a person undergoing surgery. For example, a surgeon may attempt to use a tool to interact with a lens portion of a person's eye during cataract surgery, but the identification of tissue provided by embodiments will indicate that the tool is at a position too deep inside of the eye.
Abstract:
Disclosed are methods and systems for guiding emissions to a target. The methods and systems utilize, in part, Markerless Tracking software to detect a beam of energy, such as a laser, toward a target such as a tissue that is the subject of a medical procedure.
Abstract:
Embodiments of the invention are directed to improved surgical procedures such as ophthalmic procedures that utilize overlaid visual representations of three-dimensional data or other data with direct or indirect visual images of a surgical region (e.g. the eye) to provide improved information to a surgeon to speed surgical procedures and/or to provide improved outcomes of those procedures. In some embodiments, ophthalmic procedures are combined cataract removal and astigmatism reduction procedures. In other embodiments the ophthalmic procedures are corneal refractive surgical procedures that reshape the cornea to reduce astigmatism or other aberrations. In some ophthalmic procedures the three-dimensional data is topography data associated with the anterior surface of the cornea. In some embodiments, the three-dimensional data may be enhanced or replaced with aberrometric data associated with the optical path of the eye.
Abstract:
A system for microsurgery includes a first assembly and a second assembly, each including: (1) a planar remote center of motion (RCM) device configured to constrain motion of a surgical instrument attached to the planar RCM device such that an axis of the surgical instrument passes through the RCM while remaining in a planar region defined based on a rotational orientation of the planar RCM device; and (2) a rotational device attached to the planar RCM device and configured such that an axis of rotation of the rotational device passes through the remote center of motion. The rotational orientation of the planar RCM device is defined about the axis of rotation. The first assembly and the second assembly are configured to be positioned such that a distance between the remote centers of motion of the first assembly and the second assembly is no greater than two centimeters.
Abstract:
Specific embodiments of the invention are directed to improved phacoemulsification procedures involving the use of processed non-visual three-dimensional data (i.e. diagnostic scan data) to provide a surgeon with additional guidance (i.e. more than that generally obtained from visual observation of the working area) concerning the distance separating a working end of a phacoemulsification instrument and the posterior portion of the capsule of the eye during surgical procedures involving the removal of the crystalline lens of an eye (e.g. a cataract removal procedure). Such separation (i.e. distance or gap) information may be used to aid the surgeon in cutting or scoring the lens to a desired depth while minimizing the risk of penetrating the posterior portion of the capsule with the working end of the instrument. Some embodiments provide for the visual and/or auditory conveyance of distance information to the surgeon wherein visual information may be conveyed by overlaying it with real visual images of actual surface features viewed by the surgeon. Additional embodiments provide for overlaying visual representations of selected three-dimensional structure information (e.g. depths of troughs cut into the lens) with the real surface feature images viewed by the surgeon.
Abstract:
Disclosed are methods and systems for guiding emissions to a target. The methods and systems utilize, in part, Markerless Tracking software to detect a beam of energy, such as a laser, toward a target such as a tissue that is the subject of a medical procedure.
Abstract:
The present disclosure is directed to improved phacoemulsification procedures involving the use of processed non-visual three-dimensional data (i.e. diagnostic scan data) to provide a surgeon with additional guidance concerning the distance separating a working end of a phacoemulsification instrument and the posterior capsule of the eye during a surgical procedure involving the removal of the crystalline lens of an eye. Such information is implemented to aid the surgeon in cutting or scoring the lens to a desired depth while minimizing the risk of penetrating the posterior portion of the capsule with the working end of the instrument. Some embodiments provide for the visual and/or auditory conveyance of distance information to the surgeon. Additional embodiments can provide for overlaying visual representations of selected structure information with the images provided to the surgeon.
Abstract:
A system for microsurgery includes a first assembly and a second assembly, each including: (1) a planar remote center of motion (RCM) device configured to constrain motion of a surgical instrument attached to the planar RCM device such that an axis of the surgical instrument passes through the RCM while remaining in a planar region defined based on a rotational orientation of the planar RCM device; and (2) a rotational device attached to the planar RCM device and configured such that an axis of rotation of the rotational device passes through the remote center of motion. The rotational orientation of the planar RCM device is defined about the axis of rotation. The first assembly and the second assembly are configured to be positioned such that a distance between the remote centers of motion of the first assembly and the second assembly is no greater than two centimeters.