摘要:
The invention relates to a measuring instrument for time-variable magnetix fluxes, or flux gradients, to electrical resistance elements, and to a measuring system comprising a measuring instrument or electrical resistance element according to the invention. The core component of the measuring instrument is a flux transformer composed of a base material which has a phase transition to the superconducting state. According to the invention, even when the base material is in the superconducting state, this flux transformer comprises at least one load region having electrical resistance that is other than zero for dissipating the electric energy in the conductor loop thereof. For this purpose, according to the invention the conductor loop and the magnetic field source are disposed in one plane and are typically photolithographically structured. The resistance elements according to the invention, having resistance values of ≦10−4Ω, are used as core components in the measuring instrument. According to the invention, measurement is possible in a broader frequency range, with less noise and with greater sensitivity than was possible with generic measuring instruments or measuring systems.
摘要:
The invention relates to a magnetic flow sensor (1, 21, 51) comprising a) a loop-shaped magnetic field conductor comprising a point (2, 22, 32, 52) which expands to form a bar or a film (3, 23, 52), a loop-shaped part (3a, 23a, 53a) and at least one part (4, 24, 54′, 54″) which guides back the magnetic field lines of the probe, b) SQUID (7, 27, 57), c) and a diaphragm (5, 25, 35, 55) comprising a hole (6, 26, 36, 56), whereby the part (4, 24, 54′, 54″) which guides the magnetic field lines of the probe back to the loop-shaped magnetic field conductor is connected to the diaphragm (5, 25, 35, 55).
摘要:
A three-port component comprises a source electrode, a drain electrode, and a channel, which is corrected between the source electrode and the drain electrode and which is made of a material haying an electronic conductivity that can be varied by supplying and/or removing ions. The three-port component comprises an ion reservoir, which is in contact with a gate electrode, and which is connected to the channel so that the reservoir is able to exchange ions with the channel when a potential is applied to the gate electrode. Information can be stored on the three-port component by distributing the total number of ions, which are present in the ion reservoir and the channel, between the ion reservoir and the channel. The distribution of ions in the channel and the ion reservoir changes when, and only when, a corresponding driving potential is applied to the gate electrode. Thus, in contrast to RRAMS, there is no time-voltage dilemma.
摘要:
The invention relates to a layered structure with at least one epitaxial, non-c-axis oriented high Tc superconductor (HTSC) thin film with an approximately tetragonal structure, in which the thin film having an orientation (-1,0,1) is formed on a cubic or pseudocubic (1,0,3) NdGaO.sub.3 substrate.
摘要:
The invention concerns a tunable cavity resonator that comprises a resonator body (2, 3, 4) defining a cavity (5), a tuning plate (28) whose position with respect to the resonator body (2, 3, 4) is modifiable and which influences the resonance frequency (&ohgr;R) of the cavity resonator, and an adjustment device (22, 26) for mechanically changing the position of the tuning plate (28), which is characterized in that a conversion ratio mechanism (18, 20) couples the adjustment device (22, 26) to the tuning plate (28) in terms of movement and converts a linear excursion (&Dgr;x1) generated by the adjustment device (22, 26), at a predefined ratio (U), into a reduced linear excursion (&Dgr;x2) that acts on the tuning plate (28), the conversion ratio mechanism (18, 20) comprising a first spring element (20) whose end toward the adjustment device is deflectable with the linear excursion (&Dgr;x1) generated by the adjustment device (22, 26), and a second spring element (18) which impinges with an opposing force on the end of the first spring element (20) remote from the adjustment device.
摘要:
The invention relates to a series of layers containing at least one layer on the basis of REBa2CU3O7-Z or with a comparable crystallographic structure, wherein said layer is connected to a non-superconductive layer. The only material chosen for the non-superconductive layer is material containing atomic components which are chemically compatible with the superconductive material of the high temperature superconductive layer. Such a series of layers enables a multilayer system or also a cryogenic component, e.g. a Josephson contact, to be formed.
摘要:
c-axis oriented YBa.sub.2 Cu.sub.3 O.sub.7 layers are grown with intervening SrTiO.sub.3 layers bridged over steps at which there is a transformation to a-axis crystal-oriented growth. The multilayer superconductor has YBa.sub.2 Cu.sub.3 O.sub.7 layers which are not thicker than 500 nm while the intervening layers of SrTiO.sub.3 have thicknesses of 20 to 30 nm.
摘要:
A sputtering head comprises a receiving area for a sputtering target (target receptacle). The sputtering head comprises one or more magnetic field sources so as to generate a stray magnetic field. The magnetic north and the magnetic south of at least one magnetic field source, between which the stray field forms, are located 10 mm or less, preferably 5 mm or less, and particularly preferably approximately 1 mm apart. It was found that, notably when sputtering at a high sputtering gas pressure of 0.5 mbar or more, the degree of ionization of the sputtering plasma, and consequently also the ablation rate of the sputtering target, can be locally adjusted by such a locally effective magnetic field. This allows the thicknesses of the layers that are obtained to be more homogeneous over the surface of the substrate. Advantageously, the sputtering head additionally comprises a solid state insulator, which surrounds the base body comprising the target receptacle and the sputtering target (all connected to potential) and electrically insulates the same from the shield that spatially limits the material ablation to the sputtering target (connected to ground).
摘要:
The invention relates to a measuring instrument for time-variable magnetix fluxes, or flux gradients, to electrical resistance elements, and to a measuring system comprising a measuring instrument or electrical resistance element according to the invention. The core component of the measuring instrument is a flux transformer composed of a base material which has a phase transition to the superconducting state. According to the invention, even when the base material is in the superconducting state, this flux transformer comprises at least one load region having electrical resistance that is other than zero for dissipating the electric energy in the conductor loop thereof. For this purpose, according to the invention the conductor loop and the magnetic field source are disposed in one plane and are typically photolithographically structured. The resistance elements according to the invention, having resistance values of ≦10−4Ω, are used as core components in the measuring instrument. According to the invention, measurement is possible in a broader frequency range, with less noise and with greater sensitivity than was possible with generic measuring instruments or measuring systems.
摘要:
The invention concerns a layered arrangement comprising at least one layer based on a high-temperature superconductive material with at least one unit cell having a CuO2 plane, the layer being connected to a non-supeconductive layer. A modified interface layer is provided between the two layers. Alternatively, at least one of the contacting layers can be modified in the interface region. Modification can be brought about by doping with metallic ions or implantation.