Abstract:
An apparatus and method of focusing including a source for producing an electron beam, a mask and a projection column, through which the electron beam passes, and a wafer on which the electron beam is to be focused. The wafer is located in a plane where spherical aberrations of the projection column reduce the negative defocusing effect caused by chromatic aberrations in the projection column. The apparatus and method are applicable to general electron patterning tools, electron patterning tools where a thickness of the mask is smaller than an electron mean free path of the electron patterning tool, and the SCALPEL™ electron patterning tool.
Abstract:
A method and apparatus for controlling beam emittance by placing a quadrupole lens array in a drift space of an illumination system component. The illumination system component may be an electron gun or a liner tube or drift tube, attachable to an electron gun. The quadrupole lens array may be three or more mesh grids or a combination of grids and continuous foils. The quadrupole lens array forms a multitude of microlenses resembling an optical “fly's eye” lens. The quadrupole lens array splits an incoming solid electron beam into a multitude of subbeams, such that the outgoing beam emittance is different from the incoming beam emittance, while beam total current remains unchanged. The method and apparatus permit independent control of beam current and beam emittance, which is beneficial in a SCALPEL illumination system.
Abstract:
A process for controlling the stress of multilayer films formed on a substrate is disclosed. A plurality of periods, each period having at least two layers of material wherein one of the layers of material is under compressive stress and the other layer of material is under tensile stress, are formed in a substrate. The stress in the multilayer film is controlled by selecting a thickness for the layer under compressive stress and a thickness for the layer under tensile stress that will provide a multilayer film of the desired stress. The thickness of each layer is about 0.5 nm to about 10 nm. Multilayer films with a stress of about -50 MPa to about 50 MPa are obtained using the present process. The present invention is also directed to masks with such multilayer films.
Abstract:
A method and apparatus are disclosed for fabricating a substrate having a plurality of circuit patterns. The substrate is exposed to a primary mask having a plurality of the desired circuit patterns, surrounded by one or more exclusion regions, and a secondary mask having a pattern corresponding to the exclusion regions that satisfies at least one design rule for a subsequent process. The primary and secondary masks are exposed on the substrate in any order before the resist patterns are developed. The pattern on the secondary mask may comprise, for example, an array of fill patterns. The pattern on the secondary mask may satisfy design rules for more than one process level so that a single secondary mask can be utilized for multiple process levels. In addition, the substrate only needs to be exposed to the secondary mask for process levels where the exclusion regions violate a design rule.
Abstract:
An apparatus and method of focusing including a source for producing an electron beam, a mask and a projection column, through which the electron beam passes, and a wafer on which the electron beam is to be focused. The wafer is located in a plane where spherical aberrations of the projection column reduce the negative defocusing effect caused by chromatic aberrations in the projection column. The apparatus and method are applicable to general electron patterning tools, electron patterning tools where a thickness of the mask is smaller than an electron mean free path of the electron patterning tool, and the SCALPEL™ electron patterning tool.
Abstract:
A bonded article including a single crystal cathode, for use in projection electron beam lithography, such as the SCALPEL™ system. Because of its single crystalline structure, the single crystal cathode has only slightly misoriented grains. As a result, the single crystal cathode has few structural non-uniformities, and therefore a uniform emission characteristic. The single crystal cathode may be made of at least one of tantalum, tungsten, rhenium, and molybdenum. A local bonding technique for bonding a single crystal cathode with a conventional member. The local bonding technique does not recrystallize a center of the single crystal cathode, and therefore produces a bonded article which is usable in a projection electron lithography system, such as the SCALPEL™ system. The local bonding technique may be laser welding and the single crystal cathode may be made of at least one of tantalum, tungsten, rhenium, and molybdenum. The member may be a conventional filament and the filament may be made of one of tungsten, a tungsten-rhenium alloy, and a tungsten-tantalum alloy.
Abstract:
Apparatus for moving a platform in X and Y directions including a first shaft secured along a first edge of the platform and oriented axially in the X direction and a second shaft secured along a second edge of the platform and oriented axially in the Y direction. First and second bearings support the first and second shafts, respectively, for axial movement. First and second linear drive shafts are oriented axially in the Y and X directions, respectively, with each drive shaft having a first end secured to a respective bearing. The drive shafts are arranged for independent axial movement in the Y and X directions and all of the shafts lie substantially in a single plane.
Abstract:
Techniques for processing power transistor devices are provided. In one aspect, the curvature of a power transistor device comprising a device film formed on a substrate is controlled by thinning the substrate, the device having an overall residual stress attributable at least in part to the thinning step, and applying a stress compensation layer to a surface of the device film, the stress compensation layer having a tensile stress sufficient to counterbalance at least a portion of the overall residual stress of the device. The resultant power transistor device may be part of an integrated circuit.
Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.