Abstract:
A drawn glass-coated metallic member has a thermal contraction coefficient differential such that the thermal contraction coefficient of the glass is less than that of the metallic member. The thermal contraction coefficient differential is maintained within a predetermined range during drawing. Drawn glass is placed under residual compression, interfacial bonding between said glass and said wire is substantially uniform, and surface cracking and bond breaks between metal and glass are substantially prevented. Optical properties of the glass coated microwire provide a basis for enabling multi-bit encoding capability. Advantageously data encoding is achieved optically, magneto-optically or using a combined magnetic and optical encoding mechanism. The duplex material constitution of the glass coated microwire permits imparting of data thereon by selection and processing of the glass. Data implantation is readily achieved in-line, during an initial drawing operation, or as a separate post-draw process. Reading of data on optically encoded glass coated microwire is readily accomplished by optical or magnetic methodology, or a combination thereof.
Abstract:
Composite materials formed from bone bioactive glass or ceramic fibers and structural fibers are disclosed. In preferred embodiments, a braid or mesh of interwoven bone bioactive glass or ceramic fibers and structural fibers is impregnated with a polymeric material to provide a composite of suitable biocompatibility and structural integrity. Most preferably, the mesh or braid is designed so that the bioactive fibers are concentrated at the surface of the implant to create a surface comprised of at least 30% bioactive material, thereby providing enhanced bone ingrowth. The interweaving between the bone bioactive glass or ceramic fibers and the core of structural fibers overcomes the problems found in prior composite systems where the bioactive material delaminates from the polymer. Preferred bioactive materials include calcium phosphate ceramics and preferred structural fibers include carbon fibers. Further preferred bioactive materials include aluminum oxide at greater than 0.2%, by mole. Improved prosthetic implants and methods of affixing an implant are thus also disclosed.
Abstract:
A metallic glass-coated microwire has controllable surface porosity. The porosity is achieved by etching the metallic glass-coated microwire or other shapes of glass-coated bodies with acid after annealing to produce a multi-phase glass coating. Porous metallic glass-coated microwires are found to make superior PCR machines, which find use in a variety of in vivo, biochemical, and chemical sensors. Advantageously, the PCR apparatus is smaller, less expensive to construct than conventional units. It readily carries out in vivo passive or active operations.
Abstract:
Composite materials formed from bone bioactive glass or ceramic fibers and structural fibers are disclosed. In preferred embodiments, a braid or mesh of interwoven bone bioactive glass or ceramic fibers and structural fibers is impregnated with a polymeric material to provide a composite of suitable biocompatibility and structural integrity. Most preferably, the mesh or braid is designed so that the bioactive fibers are concentrated at the surface of the implant to create a surface comprised of at least 30% bioactive material, thereby providing enhanced bone ingrowth. The interweaving between the bone bioactive glass or ceramic fibers and the core of structural fibers overcomes the problems found in prior composite systems where the bioactive material delaminates from the polymer. Preferred bioactive materials include calcium phosphate ceramics and preferred structural fibers include carbon fibers. Improved prosthetic implants and methods of affixing an implant are thus also disclosed.
Abstract:
A drawn glass-coated metallic member has a thermal contraction coefficient differential such that the thermal contraction coefficient of the glass is less than that of the metallic member. The thermal contraction coefficient differential is maintained within a predetermined range during drawing. The glass is placed under residual compression, interfacial bonding between said glass and said wire is substantially uniform, and surface cracking and bond breaks between metal and glass are substantially prevented. A dynamic balance is maintained between the surface tension of the molten alloy and the resistance to high temperature deformation by the glass vessel in which it is contained, enabling the production of glass-coated amorphous or nanocrystalline alloy members having predefined cross-sectional shapes.
Abstract:
Composite materials formed from bone bioactive glass or ceramic fibers and structural fibers are disclosed. In preferred embodiments, a braid or mesh of interwoven bone bioactive glass or ceramic fibers and structural fibers is impregnated with a polymeric material to provide a composite of suitable biocompatibility and structural integrity. Most preferably, the mesh or braid is designed so that the bioactive fibers are concentrated at the surface of the implant to create a surface comprised of at least 30% bioactive material, thereby providing enhanced bone ingrowth. The interweaving between the bone bioactive glass or ceramic fibers and the core of structural fibers overcomes the problems found in prior composite systems where the bioactive material delaminates from the polymer. Preferred bioactive materials include calcium phosphate ceramics and preferred structural fibers include carbon fibers. Further preferred bioactive materials include aluminum oxide at greater than 0.2%, by mole. Improved prosthetic implants and methods of affixing an implant are thus also disclosed.
Abstract:
The present invention relates to apparatuses and methods for analyzing enzyme reactions, including, large, industrial-scale reactions. The methods allow for enzymatic reaction to be followed on-line in real-time, without the need for sample removal and without contamination. Furthermore, the methods provide for quantitative analysis of analytes of enzymatic reactions.
Abstract:
The present invention provides methods and kits for the detection of glucuronide metabolites of various drugs, alcohols and other compounds using a combination of High Performance Liquid Chromatography coupled with Pulsed Electrochemical Detection. Detection of a drug and its glucuronide metabolite(s) has applications in interpretive forensic and clinical toxicology. The ability to estimate metabolite/drug ratios enables the assessment of route, dose and time of exposure. In instances where the parent drug is biotransformed quickly and can only found in low levels in biological fluids, the detection of metabolites allows for the identification of parent drugs. Furthermore, metabolite determination enables the differentiation between recent and chronic drug use.
Abstract:
A glass-coated amorphous metallic microwire is encoded with multi-bit digital information. Encoding is achieved magnetically, optically or through a combination of magnetic and optical encoding processes. Magnetic encoding is carried out by modifying the constituent magnetic domain structure through selective relief of interfacial stress between the glass coating and the amorphous metallic alloy core. It is also achieved by selective surface crystallization of the amorphous metallic core in order to produce a controlled magnetic bias field. Optical encoding is associated with the glass coating. It is readily achieved by fluorescent element deposition, patterned removal of fluorescent element coating, Bragg grating, and thermally activated pattern deposition. The magnetic and optical multi-bit encoding approaches for glass-coated amorphous metallic microwire can be used individually or collectively in either a redundant or a complementary manner. Encoded microwire of the instant invention can be assembled into tags for electronic article surveillance and into numerous other structures as well.
Abstract:
A drawn glass-coated metallic member has a thermal contraction coefficient differential such that the thermal contraction coefficient of the glass is less than that of the metallic member. The thermal contraction coefficient differential is maintained within a predetermined range during drawing. Drawn glass is placed under residual compression, interfacial bonding between said glass and said wire is substantially uniform, and surface cracking and bond breaks between metal and glass are substantially prevented. Optical properties of the glass coated microwire provide a basis for enabling multi-bit encoding capability. Advantageously data encoding is achieved optically, magneto-optically or using a combined magnetic and optical encoding mechanism. The duplex material constitution of the glass coated microwire permits imparting of data thereon by selection and processing of the glass. Data implantation is readily achieved in-line, during an initial drawing operation, or as a separate post-draw process. Reading of data on optically encoded glass coated microwire is readily accomplished by optical or magnetic methodology, or a combination thereof.