摘要:
In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
摘要:
In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
摘要:
The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.
摘要:
The present invention provides methods and apparatus for measuring a property of an sample, the apparatus can manipulate, detect, and analyze the sample composed of single molecules, single small particles or single small samples of matter by drawing the sample into a nanofluidic channel and stretching the sample within the channel, passing the stretched sample through a gap having a width of less than or equal to 20 nm of a nanogap detector positioned inside or adjacent to the nanofluidic channel and measuring an output from the nanogap detector representative of the property of the sample.
摘要:
A method and apparatus for performing nanoimprint lithography. When an electric field is applied between the mold and the substrate, various forces can be generated among molds, substrates, and resists. The electrostatic force between the mold and the substrate can serve as an imprinting pressure to press the structured mold into the conformable resist. In addition, the electric field induces additional wetting forces (electrowetting or dielectrophoresis) in a liquid resist, which can assist the flow and filling of the liquid resist into fine structures.
摘要:
A method and apparatus for performing nanoimprint lithography. When an electric field is applied between the mold and the substrate, various forces can be generated among molds, substrates, and resists. The electrostatic force between the mold and the substrate can serve as an imprinting pressure to press the structured mold into the conformable resist. In addition, the electric field induces additional wetting forces (electrowetting or dielectrophoresis) in a liquid resist, which can assist the flow and filling of the liquid resist into fine structures.
摘要:
In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
摘要:
The present invention provides methods and apparatus that can manipulate, detect, and/or analyze single molecules, single small particles or single small samples of matter passing through a nanoscale gap within a nanofluidic channel of a detector.
摘要:
In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
摘要:
This application describes a novel method of fabricating narrow (2-100 nm) width and long (greater than 50 micrometers and preferably 1 centimeter or longer) yet continuous hollow channels that allow flow of fluid or gas, or their combination. It can optimally include RIE pattern transfer or an optional sealing of a top surface over the channel. The invention also includes a novel method for making an imprint mold for imprinting the channel.