Abstract:
The present invention relates to a method and a device for enclosed recycling of oil-water-sludge in an oil shale dry distillation system, comprising: scrubbing and condensing oil shale dry distillation gas at a gathering pipe section, a gas tower section, an air tower section, and a cooling tower section respectively to recycle shale oil section by section; using a separator at an outlet of each section to purify and collect the shale oil, while purifying and recycling scrubbing/cooling water; using multistage dedusters to remove oil sludge entrained in an oil-water product; using an oil sludge collecting tank and a filter after the deduster to concentrate and recycle an oil sludge; and using cyclones before and after the gas tower section to remove aerosol particles and water drops entrained in circulatory gas. Advantages include: low equipment investment costs, small occupation area, low failure rate, a highly pure shale oil product and a highly concentrated oil sludge product, and recycled waste water generated in the purification and concentration processes, thereby achieving full enclosure of the device system, greatly reducing the energy consumption, and improving the oil shale dry distillation process in the prior art.
Abstract:
The invention relates to a short-flow process for desulfurization of circulating hydrogen and a device for the same. A short-flow process for desulfurization of circulating hydrogen is provided, comprising: (a) removing hydrocarbons from the circulating hydrogen mixture, so that the liquid drops of the heavy hydrocarbons in the dispersion phase are separated from the circulating hydrogen in the continuous phase, and a heavy hydrocarbon phase and a mixture phase of circulating hydrogen containing sulfur are obtained; (b) further separating the resultant mixture phase to remove the sulfides therein, so that circulating hydrogen without sulfur is obtained; (c) further separating the resultant circulating hydrogen without sulfur to remove the amine solution therein, so that purified circulating hydrogen is obtained. The invention also provides a device for desulfurization of circulating hydrogen.
Abstract:
The invention relates to a process and an apparatus for optimized combination of purification and separation of MTO reaction gas containing catalyst fine powder. In particular, the invention provides a process for optimized combination of purification and separation of MTO reaction gas containing catalyst fine powder, comprising (a) scrubbing, purifying and cooling the MTO reaction gas containing catalyst fine powder, and separating and recovering the mist entrained in the scrubbed reaction gas and the catalyst fine powder that is not scrubbed off; (b) subjecting the scrubbing liquid containing catalyst fine powder to solid-liquid separation, and the purified scrubbing liquid after separation to repeated use after subsequent heat exchange and stripping treatment; and (c) subjecting the scrubbing liquid containing catalyst fine powder to solid-liquid separation, and further concentrating the scrubbing liquid containing catalyst fine powder after separation before the catalyst fine powder is finally recovered in solid form by centrifugal dewatering or drying. The invention also provides an apparatus for optimized combination of purification and separation of MTO reaction gas containing catalyst fine powder.
Abstract:
The cobalt(II) complex of new D2-symmetric chiral porphyrin 3,5-DiMes-ChenPhyrin, [Co(P2)], has been shown to be a highly effective chiral metalloradical catalyst for enantioselective cyclopropenation of alkynes with acceptor/acceptor-substituted diazo reagents such as α-cyanodiazoacetamides and α-cyanodiazoacetates. The [Co(P2)]-mediated metalloradical cyclopropenation is suitable to a wide range of terminal aromatic and related conjugated alkynes with varied steric and electronic properties, providing the corresponding tri-substituted cyclopropenes in high yields with excellent enantiocontrol of the all-carbon quaternary stereogenic centers. In addition to mild reaction conditions, the Co(II)-based metalloradical catalysis for cyclopropenation features a high degree of functional group tolerance.
Abstract:
The invention relates to a process and a device for treating a catalyst discharged from bubbling bed hydrogenation of residual oil. Provided is a process for treating a catalyst discharged from bubbling bed hydrogenation of residual oil, comprising the following steps: (1) adjustment and control to reduce viscosity; (2) desorption and separation by rotational flow; and (3) separation and resource utilization of an oil-water-catalyst three phase. Also provided is a device for treating a catalyst discharged from bubbling bed hydrogenation of residual oil.
Abstract:
The present disclosure includes systems, methods, and articles of manufacture for controlling a door. In various embodiments, exemplary systems may include a controller that may initialize and/or reset a limit count. A controller may initialize and/or reset a limit count in response to detection by a first position sensor of a first target. A controller may further initialize and/or reset a limit count by incrementing the limit count in response to a signal from a gear tooth sensor until a second position sensor detects a second target, whereupon the controller may store the limit count.
Abstract:
The present invention relates to a method and a device for enclosed recycling of oil-water-sludge in an oil shale dry distillation system. According to the method, the technology is advanced, equipment investment costs are low, the occupied area is small, the failure rate is low, a highly pure shale oil product and a highly concentrated oil sludge product can be obtained efficiently, and the waste water generated in the purification and concentration processes can be recycled, thereby achieving full enclosure of the device system, greatly reducing the energy consumption, and improving the oil shale dry distillation process in the prior art.
Abstract:
The present disclosure includes systems, methods, and articles of manufacture for controlling a door. In various embodiments, exemplary systems may include a controller that may initialize and/or reset a limit count. A controller may initialize and/or reset a limit count in response to detection by a first position sensor of a first target. A controller may further initialize and/or reset a limit count by incrementing the limit count in response to a signal from a gear tooth sensor until a second position sensor detects a second target, whereupon the controller may store the limit count.
Abstract:
Provided are a method and an apparatus for micro-hydrocyclone purification for a flue gas carbon dioxide capture system. The method comprises: performing gas-liquid micro-hydrocylone separation with ultralow pressure drop on scrubbed flue gas, to remove aerosol particulates entrained in the flue gas; performing gas-liquid micro hydrocyclone separation with ultralow pressure drop on off-gas vented from the top of an absorption column, to remove entrained aerosol particulates; performing gas-liquid micro hydrocyclone separation with ultralow pressure drop on cooled regeneration gas, to remove entrained aerosol particulates; and performing liquid-solid and liquid-liquid two-stage micro-hydrocyclone separation on a mixed amine solution lean for carbon dioxide discharged from regeneration column, to remove entrained solid particulates and machine oil. The apparatus comprises: a water scrubbing column, rotation flow separators, liquid-solid micro-hydrocyclone separator sets, a water scrubbing tank, a absorption column, a regeneration column, liquid-solid micro-hydrocyclones and liquid-liquid micro-hydrocyclones.
Abstract:
Provided are a method and an apparatus for micro-hydrocyclone purification for a flue gas carbon dioxide capture system. The method comprises: performing gas-liquid micro-hydrocylone separation with ultralow pressure drop on scrubbed flue gas, to remove aerosol particulates entrained in the flue gas; performing gas-liquid micro hydrocyclone separation with ultralowpressure drop on off-gas vented from the top of an absorption column, to remove entrained aerosol particulates; performing gas-liquid micro hydrocyclone separation with ultralow pressure drop on cooled regeneration gas, to remove entrained aerosol particulates; and performing liquid-solid and liquid-liquid two-stage micro-hydrocyclone separation on a mixed amine solution lean for carbon dioxide discharged from regeneration column, to remove entrained solid particulates and machine oil. The apparatus comprises: a water scrubbing column, rotation flow separators, liquid-solid micro-hydrocyclone separator sets, a water scrubbing tank, a absorption column, a regeneration column, liquid-solid micro-hydrocyclones and liquid-liquid micro-hydrocyclones.