摘要:
To provide a method for producing a conductive film with excellent transparency and conductivity by a simple method suitable for large-area production.A method for producing a conductive film comprising a step of placing a template (B), having openings in a mesh structure running from the side that is to contact a substrate (A) through to the back side, on the surface of the substrate (A), and spreading a dispersion (D) of conductive particles (P) on the surface of the substrate (A) on which the template (B) has been placed, and drying it, thereby forming a mesh-like structure (C) of the conductive particles (P) near the points of contact between the substrate (A) and the template (B), and then removing the template (B) from the substrate (A) to form a mesh-like structure (C) of the conductive particles (P) on the surface of the substrate (A).
摘要:
Provided are urethane resin particles for slush molding which make it possible that inconveniences based on the slip-down of a pigment, on the aggregation of particles of the pigment, and on other causes are removed although this coloring is coloring onto the resin particle surfaces. The present invention is urethane resin particles for slush mold which contain a urethane resin and an additive, wherein the particles have a shape factor SF1 of 101 to 200, a shape factor SF2 of 120 to 240, and a central particle diameter of 20 to 500 μm. It is preferred that the urethane resin has a concentration of urea groups of 0.5 to 10% by weight, a total of the concentration of urethane groups and that of the urea groups of 4 to 20% by weight, a melting point of 160 to 260° C. and a glass transition temperature of −65 to 0° C.
摘要:
Provided are urethane resin particles for slush molding which make it possible that inconveniences based on the slip-down of a pigment, on the aggregation of particles of the pigment, and on other causes are removed although this coloring is coloring onto the resin particle surfaces. The present invention is urethane resin particles for slush mold which contain a urethane resin and an additive, wherein the particles have a shape factor SF1 of 101 to 200, a shape factor SF2 of 120 to 240, and a central particle diameter of 20 to 500 μm. It is preferred that the urethane resin has a concentration of urea groups of 0.5 to 10% by weight, a total of the concentration of urethane groups and that of the urea groups of 4 to 20% by weight, a melting point of 160 to 260° C. and a glass transition temperature of −65 to 0° C.
摘要:
Provided is a slush molding material which exhibits excellent low-temperature meltability and heat resistance and which can yield a molded product having excellent tensile strength and elongation. The present invention is urethane resin particles (D1) comprising a urethane or urethane-urea resin (U1) that has residues (j) bonded thereto covalently, said residues (j) being residues derived from an at least trivalent aromatic polycarboxylic acid by removing hydroxyl groups, or urethane resin particles (D2) comprising a urethane resin composition (S2) which comprises both a urethane or urethane-urea resin (U2) and a compound (E) that has a residue (j) derived from an at least trivalent aromatic polycarboxylic acid by removing hydroxyl groups, said compound (E) being represented by general formula (1), wherein the residues (j) are linked respectively to urethane or urea groups (u) of the resin (U1) or (U2) by hydrogen bonds.
摘要:
Provided are: a powdered material for slush molding; and a manufacturing process therefor. The powdered material is less odorous, exhibits excellent powder fluidity, and does not suffer from troubles resulting from the sliding-down or agglomeration of a pigment even when the resin particles have been pigmented on the surfaces thereof. Thus, the powdered material ensures high productivity. The powdered material is a powdered polyurethane urea resin composition which comprises (D) a polyurethane urea resin that has a total content of bimolecular condensate of acetone, bimolecular condensate of methyl ethyl ketone, and bimolecular condensate of methyl isobutyl ketone of 1,000 ppm or less and (N) an additive, wherein the polyurethane urea resin (D) takes the form of thermoplastic polyurethane urea resin particles (P) that have a volume-mean particle diameter of 20 to 500 μm and that have protrusions and recesses on the surfaces. The powdered polyurethane urea resin composition is manufactured by a manufacturing process which includes a step of mixing (A) an isocyanato-terminated urethane prepolymer with (B) an alicyclic diamine and/or an aliphatic diamine in an aqueous medium by stirring to form the resin particles (P).
摘要:
An object is to provide a material for slush molding that is excellent in low-temperature meltability, and gives a molded body excellent in both of tensile strength and elongation. The present invention is a thermoplastic urethane resin (D) for thermal molding, which is a thermoplastic urethane resin yielded by causing high molecular weight diols (A) to react with a diisocyanate (B), wherein the high molecular weight diols (A) comprise a polyester diol (A1) having a glass transition temperature of 0 to 70° C., and a high molecular weight diol (A2) having a solubility parameter lower than that of the (A1) by 1.2 to 3.0 and further having a glass transition temperature of −40 to −75° C.
摘要:
Provided are: a powdered material for slush molding; and a manufacturing process therefor. The powdered material is less odorous, exhibits excellent powder fluidity, and does not suffer from troubles resulting from the sliding-down or agglomeration of a pigment even when the resin particles have been pigmented on the surfaces thereof. Thus, the powdered material ensures high productivity. The powdered material is a powdered polyurethane urea resin composition which comprises (D) a polyurethane urea resin that has a total content of bimolecular condensate of acetone, bimolecular condensate of methyl ethyl ketone, and bimolecular condensate of methyl isobutyl ketone of 1,000 ppm or less and (N) an additive, wherein the polyurethane urea resin (D) takes the form of thermoplastic polyurethane urea resin particles (P) that have a volume-mean particle diameter of 20 to 500 μm and that have protrusions and recesses on the surfaces. The powdered polyurethane urea resin composition is manufactured by a manufacturing process which includes a step of mixing (A) an isocyanato-terminated urethane prepolymer with (B) an alicyclic diamine and/or an aliphatic diamine in an aqueous medium by stirring to form the resin particles (P).
摘要:
Provided is a slush molding material which exhibits excellent low-temperature meltability and heat resistance and which can yield a molded product having excellent tensile strength and elongation. The present invention is urethane resin particles (D1) comprising a urethane or urethane-urea resin (U1) that has residues (j) bonded thereto covalently, said residues (j) being residues derived from an at least trivalent aromatic polycarboxylic acid by removing hydroxyl groups, or urethane resin particles (D2) comprising a urethane resin composition (S2) which comprises both a urethane or urethane-urea resin (U2) and a compound (E) that has a residue (j) derived from an at least trivalent aromatic polycarboxylic acid by removing hydroxyl groups, said compound (E) being represented by general formula (1), wherein the residues (j) are linked respectively to urethane or urea groups (u) of the resin (U1) or (U2) by hydrogen bonds.
摘要:
To provide a method for producing a conductive film with excellent transparency and conductivity by a simple method suitable for large-area production.A method for producing a conductive film comprising a step of placing a template (B), having openings in a mesh structure running from the side that is to contact a substrate (A) through to the back side, on the surface of the substrate (A), and spreading a dispersion (D) of conductive particles (P) on the surface of the substrate (A) on which the template (B) has been placed, and drying it, thereby forming a mesh-like structure (C) of the conductive particles (P) near the points of contact between the substrate (A) and the template (B), and then removing the template (B) from the substrate (A) to form a mesh-like structure (C) of the conductive particles (P) on the surface of the substrate (A).