Abstract:
A fuel injection valve includes: a swirl chamber having an inner peripheral wall formed to be gradually increased in curvature toward a downstream side from an upstream side; a swirl passage, through which a fuel is introduced into the swirl chamber; and a fuel injection port opened to the swirl chamber, wherein the swirl chamber and the swirl passage are formed so that a side wall of the swirl passage connected to a downstream end side of the swirl chamber, or an extension thereof is made not to intersect a downstream side portion of the inner peripheral wall of the swirl chamber, or an extension thereof.
Abstract:
A fuel injector has a swirl generator located downstream from a valve seat. A fuel injection hole is connected to a downstream side of the swirl generator. The swirl generator includes a swirl chamber having an involute or a spiral shape and the fuel injection hole bored at a bottom or the swirl chamber and a swirl generation use passage connected to the upstream side of the swirl chamber for introducing fuel into the swirl chamber. The bottom of the swirl chamber is provided with a step height so as to make a level difference in which the bottom of the swirl chamber is lower than a bottom of the swirl generation use passage, and the step height is formed at a position where fuel flowing into the swirl chamber from the swirl generation use passage meets fuel turning in the swirl chamber.
Abstract:
A fuel injector has a swirl generator located downstream from a valve seat. A fuel injection hole is connected to a downstream side of the swirl generator. The swirl generator includes a swirl chamber having an involute or a spiral shape and the fuel injection hole bored at a bottom or the swirl chamber and a swirl generation use passage connected to the upstream side of the swirl chamber for introducing fuel into the swirl chamber. The bottom of the swirl chamber is provided with a step height so as to make a level difference in which the bottom of the swirl chamber is lower than a bottom of the swirl generation use passage, and the step height is formed at a position where fuel flowing into the swirl chamber from the swirl generation use passage meets fuel turning in the swirl chamber.
Abstract:
There is provided a fuel injection valve, in which uniformity in swirl intensity in a peripheral direction of a swirl fuel is heightened.A fuel injection valve comprises a valve element 3 and a valve seat 10, which cooperate to open and close a fuel passage to perform injection of a fuel and stoppage of injection, a nozzle body 4 having the valve seat 10, a swirl passage 21 provided downstream of a seat portion 10a, on which the valve element 3 and the valve seat 10 contact with each other, and a swirl chamber 22, to which the swirl passage 21 and a fuel injection port 23 are connected, and a recess (buffer) 24 for enlargement of the swirl chamber 22 in volume is provided on a wall surface portion 4a of the swirl chamber 22 opposed to the fuel injection port 23.
Abstract:
A fuel injection valve comprises a valve seat, a movable valve element which is seated on or separated from the valve seat, and a nozzle member having a plurality of nozzle holes. At least one of the valve element and valve seat has a curved surface at a contact position where they contact with each other when the valve element is seated on the valve seat. Two or more of the nozzle holes are provided outside an intersection line of a virtual extension surface along a tangential line to the curved surface at the contact position and a surface of the nozzle member.
Abstract:
The storage case has a structure in which a sample storage case (S) contained in a storage case is cooled and held at a low temperature by a Stirling refrigerator. A detection element is disposed in a room-temperature area of the storage case. The chemical or physical property of the detection element varies when a contaminant adheres to the detection element. Entrance of a contaminant into the storage case can be checked by contactlessly checking the detection element from the outside of the storage case. The storage case includes a server for receiving the result of the check from the detection device, storing the result, and setting up connection via a communication line to at least two out of a terminal operable by the forwarder, a terminal operable by the carrier, and a terminal operable by the recipient to transmit the result to the two.
Abstract:
Fuel injection valve with conical valve seat surface that abuts a valve body to seal fuel, fuel injection orifices having an inlet opening formed on the valve seat surface, wherein fuel sprays injected from the plurality of fuel injection orifices include a first fuel spray constituted by a fuel spray injected from at least one fuel injection orifice and a second fuel spray constituted by a plurality of fuel sprays injected at an outer periphery of the first fuel spray, and a fuel injection orifice that injects the first fuel spray constituted with a plane that includes an orifice axis connecting a center of an inlet with a center of an outlet of the fuel injection orifice, parallel to a center axis of the fuel injection valve intersecting a plane, a conical apex that forms the valve seat surface to form an inclination angle that is larger than 0°.
Abstract:
In the valve, fuel, flowing down as a valve side flow along the side of the valve, further flows down toward an orifice plate through a fuel path which closes and opens upon forward and backward movement of the valve, and is injected as a mist from each orifice. The valve moves forward and backward by sliding on a valve surrounding portion through a guide portion constituted by plural sliding guides arranged between the valve and valve surrounding portion. Since the sliding guides are tapered from the valve to the surrounding portion, the side flow from the guide portion has a flow velocity distribution biased toward the surrounding portion.
Abstract:
The heating injector in which the fuel is heated within a short time when starting and the size of a fuel atomized particle is very small h as casing 10 for a fuel injection valve which supplies fuel to an engine, orifice member 50 with an orifice through which fuel passes, plunger 20 which carries out switching action of orifice, swirl chip 30 which contacts the orifice member and the casing at a plurality of positions, and forms a fuel passage blocked by a plurality of narrow portions and a fuel heating space channel where entrance side was blocked by the narrow portion in the downstream side, and a heater which is arranged between fuel passage forming member and casing and supported by either of the fuel passage forming member or the casing in a plurality of parts in the fuel passage.
Abstract:
The heating injector in which the fuel is heated within a short time when starting and the size of a fuel atomized particle is very small h as casing 10 for a fuel injection valve which supplies fuel to an engine, orifice member 50 with an orifice through which fuel passes, plunger 20 which carries out switching action of orifice, swirl chip 30 which contacts the orifice member and the casing at a plurality of positions, and forms a fuel passage blocked by a plurality of narrow portions and a fuel heating space channel where entrance side was blocked by the narrow portion in the downstream side, and a heater which is arranged between fuel passage forming member and casing and supported by either of the fuel passage forming member or the casing in a plurality of parts in the fuel passage.