摘要:
A high-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability, the steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.13% or less, Si: 0.9% or more and 2.3% or less, Mn: 0.8% or more and 2.4% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities and a microstructure including, in terms of area ratio, 94% or more of a ferrite phase and 2% or less of a martensite ferrite phase, wherein mean grain size of ferrite is 10 μm or less, Vickers hardness of ferrite is 140 or more, mean grain size of carbide particles existing at grain boundaries of ferrite is 0.5 μm or less, and aspect ratio of carbide particles existing at the grain boundaries of ferrite is 2.0 or less.
摘要:
The high-strength galvanized steel sheet having excellent formability has a component composition containing, on the basis of mass percent, 0.05 to 0.2% C, 0.5 to 2.5% Si, 1.5 to 3.0% Mn, 0.001 to 0.05% P, 0.0001 to 0.01% S, 0.001 to 0.1% Al, and 0.0005 to 0.01% N, the balance being Fe and incidental impurities; and the steel sheet has a microstructure including a ferritic phase and a martensitic phase including a tempered-martensitic phase, the ferritic phase having an area fraction of 30% or more relative to an entirety of the microstructure, the martensitic phase having an area fraction of 30 to 50% relative to the entirety of the microstructure, and the tempered-martensitic phase having an area fraction of 70% or more relative to an entirety of the martensitic phase.
摘要:
A hot rolled steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.20% or less, Si: 0.7% or more and 2.3% or less, Mn: 0.8% or more and 2.8% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities. The microstructure of the hot rolled steel sheet includes ferrite and pearlites, in which the area ratio of the ferrite is 75% or more and less than 95%, the mean grain size of the ferrite is 5 μm or more and 25 μm or less, the area ratio of pearlite is 5% or more and less than 25%, the mean grain size of pearlite is 2.0 μm or more, and the mean free path of pearlite is 5 μm or more.
摘要:
A high strength galvanized steel sheet having a TS of 780 MPa or more and exhibiting excellent stretch frangeability and bendability and a method for manufacturing the same are provided. The component composition contains C: 0.05% to 0.15%, Si: 0.8% to 2.5%, Mn: 1.5% to 3.0%, P: 0.001% to 0.05%, S: 0.0001% to 0.01%, Al: 0.001% to 0.1%, N: 0.0005% to 0.01%, Cr: 0.1% to 1.0%, Ti: 0.0005% to 0.1%, B: 0.0003% to 0.003%, and the remainder composed of iron and incidental impurities, on a percent by mass basis. The microstructure includes 30% or more of ferrite phase and 30% or more, and 70% or less of martensite phase on an areal fraction basis, wherein regarding the above-described martensite phase, the proportion of a tempered martensite phase is 20% or more relative to the whole martensite phase and the proportion of a martensite phase having a grain diameter of 1 μm or less is 10% or less relative to the whole martensite phase.
摘要:
A high-strength galvanized steel sheet contains C: 0.04% or more and 0.10% or less, Si: 0.7% or more and 2.3% or less, Mn: 0.8% or more and 2.0% or less, P: 0.03% or less, S: 0.003% or less, Al: 0.1% or less, and N: 0.008% or less on a mass percent basis, and the remainder of iron and incidental impurities. The C content [C%] (% by mass) and the Si content [Si%] (% by mass) satisfy [C%]×[Si%]≦0.20. A ferrite phase constitutes 75% or more, a bainitic ferrite phase constitutes 1% or more, a pearlite phase constitutes 1% or more and 10% or less, and a martensite phase constitutes less than 5% on an area ratio basis. The area ratio of the martensite phase/(the area ratio of the bainitic ferrite phase + the area ratio of the pearlite phase) is 0.6 or less.
摘要:
The present invention provides a high-strength galvanized steel sheet having excellent ductility, stretch flangeability, and fatigue resistance, and a method for manufacturing the same. A high-strength galvannealed steel sheet having excellent formability and fatigue resistance is characterized in that the steel sheet is composed of steel having a composition containing, by % by mass, C: 0.05% to 0.3%, Si: 0.5% to 2.5%, Mn: 1.0% to 3.5%, P: 0.003% to 0.100%, S: 0.02% or less, Al: 0.010% to 0.1%, and the balance including iron and unavoidable impurities, and the steel sheet has a microstructure containing 50% or more of ferrite, 5% to 35% of martensite, and 2% to 15% of pearlite in terms of an area ratio, the martensite having an average gain size of 3 μm or less and an average distance of 5 μm or less between adjacent martensite grains.
摘要:
A high-strength galvanized steel sheet is provided which has a tensile strength of a level of about 590 MPa and superior formability, including a coating with good appearance. The galvanized steel sheet includes a base steel and a galvanized coating layer formed over the surface of the base steel. The galvanized steel sheet has a chemical composition containing 0.005% to 0.12% of C, 0.7% to 2.7% of Si, 0.5% to 2.8% of Mn, 0.1% or less of P, 0.07% or less of S, 1.0% or less of Al, 0.008% or less of N, and the balance being Fe and inevitable impurities on a mass basis, and a microstructure constituted of at least 90% of ferrite and 2% to 10% of martensite on an area basis. The ferrite has a Vickers hardness of 120 or more on average, and an inclusion is precipitated from the grain boundary with a length of 50% or less relative to the entire length of the grain boundary in the surface layer of the base steel with a depth of 3 μm from the interface between the coating layer and the base steel.
摘要:
A method of manufacturing a high strength galvanized steel sheet has a first heating step including heating to 400° C. to 750° C. in an atmosphere containing O2: 0.1 to 20 percent and H2O: 1 to 50 percent and heating to 600° C. to 850° C. in an atmosphere containing O2: 0.01 to less than 0.1 percent and H2O: 1 to 20 percent is applied to a steel sheet, a second heating step includes holding the steel sheet in an atmosphere containing H2: 1 to 50 percent and having a dew point of 0° C. or lower at 750° C. to 900° C. for 15 to 600 s, cooling to a temperature of 450° C. to 550° C., and holding is performed at that temperature for 10 to 200 s, and a galvanization treatment is applied.
摘要:
A method for manufacturing the high strength steel sheet having excellent formability includes hot-rolling a steel slab having a chemical composition containing, by mass %, C: 0.03% or more and 0.35% or less, Si: 0.5% or more and 3.0% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, N: 0.008% or less and the balance comprising Fe and inevitable impurities, coiling the hot-rolled steel sheet at a temperature range of the Ar1 transformation point to the Ar1 transformation point+(the Ar3 transformation point−the Ar1 transformation point)/2, cooling the coiled steel sheet down to 200° C. or lower, heating and holding the cooled steel sheet at a temperature range of the Ac1 transformation point−200° C. to the Ac1 transformation point for 30 minutes or more, pickling the heated steel sheet, cold-rolling the pickled steel sheet under the condition that the rolling reduction is 20% or more, and heating and holding the cold-rolled steel sheet at a temperature range of the Ac1 transformation point to the Ac1 transformation point+(the Ac3 transformation point−the Ac1 transformation point)/2 for 30 seconds or more.
摘要:
A high-strength galvanized steel sheet has a TS of at least 590 MPa and excellent ductility and stretch flangeability and a method for manufacturing the high-strength galvanized steel sheet. The galvanized steel sheet contains, on the basis of mass percent, C: 0.05% to 0.3%, Si: 0.01% to 2.5%, Mn: 0.5% to 3.5%, P: 0.003% to 0.100% or less, S: 0.02% or less, and Al: 0.010% to 1.5%. The total of Si and Al is 0.5% to 2.5%. The remainder are iron and incidental impurities, contain 20% or more of ferrite phase, 10% or less of martensite phase, and 10% to 60% of tempered martensite, on the basis of area percent, and 3% to 10% of retained austenite phase on the basis of volume fraction. The retained austenite has an average grain size of 2.0 μm or less.