摘要:
The present invention relates to a microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same. More particularly, the present invention relates to a recombinant microorganism of Corynebacterium genus having enhanced L-lysine productivity by inactivating endogenous NCgI 1090 gene having the amino acid sequence containing repeated aspartate residues and a method of producing L-lysine using the same.
摘要:
The present invention provides a microorganism that belongs to the genus Corynebacterium and has an inactivated inherent NCgl2053 dehydrogenase gene, and a method of producing L-lysine using the same. By using the microorganism, the yield of L-lysine is increased since an inherent NCgl2053 dehydrogenase gene is inactivated. According to the method, L-lysine can be produced with high yield.
摘要:
The present invention relates to a microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same. More particularly, the present invention relates to a recombinant microorganism of Corynebacterium genus having enhanced L-lysine productivity by inactivating endogenous NCgl2534 gene having the amino acid sequence containing repeated lysine residues and a method of producing L-lysine using the same.
摘要:
Provided are a microorganism of Corynebacterium genus that has an inactivated endogenous NCgl1835 gene therein and produces L-lysine, and a method of producing L-lysine using the same.
摘要:
The present invention relates to a microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same. More particularly, the present invention relates to a recombinant microorganism of Corynebacterium genus having enhanced L-lysine productivity by inactivating endogenous NCgI 1090 gene having the amino acid sequence containing repeated aspartate residues and a method of producing L-lysine using the same.
摘要:
The present invention relates to a novel Enterobacter sp. strain SSYL deposited under accession number KCTC 0687BP isolated from the root bark of Chinese elm, which produces immunostimulating exopolysaccharides with anticancer activity, a process for preparing the exopolysaccharides by fermenting the said microorganism in a culture medium, exopolysaccharides prepared by the process and their uses thereof. The exopolysaccharides of the invention have a molecular weight of 100,000 to 1,000,000 and consist of 40-75% of total sugar, 5-15% of total acidic sugar and 10-25% of total protein. The exopolysaccharides exhibits a high immunoenhancing activity in immune cell proliferation, direct mitogenicity and mixed lymphocyte reaction, and further a high anticancer activity in vivo by virtue of immunostimulation. Moreover, the production of the exopolysaccharides by fermentation of a microorganism, makes it possible to provide the exopolysaccharides with a uniform quality and mass production without destruction of the plant species. The exopolysaccharides of the subject invention have practical uses as an active ingredient for anticancer agents, immunoenhancers and foodstuffs.
摘要:
The present invention relates to a microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same. More particularly, the present invention relates to a recombinant microorganism of Corynebacterium genus having enhanced L-lysine productivity by inactivating endogenous NCgl2534 gene having the amino acid sequence containing repeated lysine residues and a method of producing L-lysine using the same.
摘要:
The present invention relates to a microorganism producing L-threonine with increased L-threonine production efficiency by the increased activity of aspartate semialdehyde dehydrogenase in L-threonine biosynthesis pathway,
摘要:
A metabolite, e.g., ethanol, is continuously produced from low cost carbohydrate substrates by a process which comprises pulverizing the carbohydrate substrate; liquefying and saccharifying the pulverized substrate; continuously fermenting the lique-saccharified substrate in a fermentor equipped with a moving filter, in the presence of flocculent biological cells maintained at a concentration ranging from 90 to 160 g/l by using the moving filter and a culture medium to produce a fermentation product mixture; and recovering the desired metabolite from the fermentation product mixture.