Abstract:
A MEMS chip includes a cap layer and a composite device layer. The cap layer includes a substrate. The substrate has a first region and a second region, wherein the first region includes plural first trenches and the second region has plural second trenches. The first region has a first etch pattern density and the second region has a second etch pattern density, wherein the first etch pattern density is higher than the second etch pattern density to form chambers of different pressures.
Abstract:
A multi-layered material and a method for making the same are provided. The multi-layered material includes a first foamed layer, a substrate, a second foamed layer, and a surface layer. The first foamed layer has a plurality of first cells. The substrate is a fabric. The second foamed layer has a plurality of second cells. The foaming method of the second foamed layer is different from that of the first foamed layer. The size of the second cells is different from that of the first cells. The variation in size of the second cells is different from that of the first cells. The surface layer is disposed on the second foamed layer. Thus, when the multi-layered material is used as a surface cover of a ball, it can provide excellent resilience and control, and improve manufacturing efficiency.
Abstract:
Methods and apparatuses for re-instantiating a firmware environment that includes one or more firmware functions available at pre-boot time when transitioning the computing device from a first, higher power consumption state to a second, lower power consumption state. The firmware environment determines whether a cryptographic signature on a firmware volume is verified; whether hardware resources of the computing device requested by a manifest of the firmware volume are available; and whether a firmware module of the firmware volume is compatible with installed firmware of the firmware environment. If so, the firmware environment reserves space in a memory to accommodate resources used by the firmware module, and executes the firmware module with the computing device in the second, lower power consumption state.
Abstract:
A method and apparatus provide for simultaneously moving multiple semiconductor wafers in opposite directions while simultaneously performing processing operations on each of the wafers. The semiconductor wafers are orientated in coplanar fashion and are disposed on stages that simultaneously translate in opposite directions to produce a net system momentum of zero. The die of the respective semiconductor wafers are processed in the same spatial sequence with respect to a global alignment feature of the semiconductor wafer. A balance mass is not needed to counteract the motion of a stage because the opposite motions of the respective stages cancel each other.
Abstract:
A control module may be used for raising and lowering a window shade. This configuration allows a user to pull the operating cord a predetermined distance to raise the window shade, then release the operating cord until it has retracted, and then pull the operating cord another predetermined distance to raise the window shade again. A brake mechanism is operably connected to a brake release and configured to lock or unlock the drive axle. A clutch is adapted to be mounted on the axle for selectively engaging the cord drum to the axle. The cord drum may rotate independent of the drive axle when a clutch is disengaged from the drive axle. As a result, movement of the operating cord will not cause the window shade to raise while the clutch is disengaged. When the clutch is engaged with the drive axle, the cord drum and adapter sleeve may rotate together to drive the rotation of the drive axle for raising the window shade.
Abstract:
A control module may be used for raising and lowering a window shade. This configuration allows a user to pull the operating cord a predetermined distance to raise the window shade, then release the operating cord until it has retracted, and then pull the operating cord another predetermined distance to raise the window shade again. A brake mechanism is operably connected to a brake release and configured to lock or unlock the drive axle. A clutch is adapted to be mounted on the axle for selectively engaging the cord drum to the axle. The cord drum may rotate independent of the drive axle when a clutch is disengaged from the drive axle. As a result, movement of the operating cord will not cause the window shade to raise while the clutch is disengaged. When the clutch is engaged with the drive axle, the cord drum and adapter sleeve may rotate together to drive the rotation of the drive axle for raising the window shade.
Abstract:
A touch display device includes a housing, a flexible monitor installed on the housing, and at least one keystroke device installed inside the housing and under the flexible monitor for generating at least one trigger signal. When the flexible monitor are pressed by external forces at positions corresponding to the at least one keystroke device, deformation of the flexible monitor occurs and further press the at least one keystroke device, to make the at least one keystroke device to generate the at least one trigger signal.
Abstract:
The present invention provides a double cell structure for window shade and its manufacture method for forming a substrate of double cell units. The substrate comprises first and second strip material bonded with each other, two lateral sides of the substrate being formed by first and second pleats. The substrate can then be cut to form multiple double cell units that are then stacked and bonded over one another for forming the double cell structure. In addition, the present invention also provides double cell structures for window shade.
Abstract:
A touch operation method and an operation method of an electronic device are provided. The touch operation method comprises judging whether an await-selection object displayed on a touch screen is touched; outputting a floating menu corresponding to an attribute of the await-selection object when a touch time period of touching the await-selection object lasts for a first predetermined time period; judging whether one of a plurality of menu fields in the floating menu is selected, and performing a first instruction corresponding to the selected menu field when one of the menu fields in the floating menu is selected; and performing a second instruction corresponding to the selected menu field when a touch time period of selecting the selected menu field lasts for a second predetermined time period.
Abstract:
A method of determining input pattern is adapted to be implemented on an electronic apparatus equipped with a touch panel and includes the steps of: detecting a plurality of boundary points between an input pattern inputted through the touch panel and a circumscribed polygon of the input pattern, detecting an area ratio of a polygon defined by the boundary points to the circumscribed polygon, and determining the shape of the input pattern at least according to the area ratio. The present invention also provides a computer readable storage medium having a program stored therein. When the program is executed which enables an electronic apparatus equipped with a touch panel to determine the shape and/or direction of an input pattern inputted through the touch panel.