Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
Anti-icing stacks for protecting an aerodynamic surface are described. In some embodiments, an anti-icing stack includes an anti-icing layer, an elastomeric erosion protection layer, and an additional layer. The erosion protection layer is disposed between the anti-icing layer and the additional layer. The additional layer has a thickness greater than the thickness of the erosion protection layer and a tensile modulus of no more than the tensile modulus of the erosion protection layer. The additional layer may be a foam adhesive layer.
Abstract:
The present disclosure relates to a color-changing composition comprising: a) a dye selected from the group consisting of metal complexes, wherein the metal complexes comprise: i. a central ion of a metal selected from the group consisting of iron, vanadium, chromium, manganese, cobalt, nickel and copper; and ii. chelate ligands having heteroaromatic structures; b) an adhesive composition; c) optionally, a curable polymer resin selected from the group consisting of epoxy resins, polyester resins, polyurethane resins, vinyl resins, and any combinations or mixtures thereof; wherein the color-changing composition has an initial color and is capable of changing color to a final color upon contacting a curable composition comprising one or more curing agents and a curable polymer resin; wherein the one or more curing agents are suitable to cure the curable polymer resin; and wherein the initial color is different from the final color.
Abstract:
Described herein is a method of purifying a product and recycling water comprising the following steps: (i) providing a crude product comprising at least one low molecular weight fluoroorganic compounds wherein the low molecular weight fluoroorganic compounds is partially fluorinated and comprises a polar group and/or a reactive group; (ii) extracting the impurity from the product using water to form an extract, (iii) contacting the extract with a radical-forming process to degrade the low molecular weight fluoroorganic compounds into carbon dioxide, water, fluorine ions, and optionally cations; and (iv) using the water from step (iii) in step (ii)
Abstract:
Anti-icing stacks for protecting an aerodynamic surface are described. In some embodiments, an anti-icing stack includes an anti-icing layer, an elastomeric erosion protection layer, and an additional layer. The erosion protection layer is disposed between the anti-icing layer and the additional layer. The additional layer has a thickness greater than the thickness of the erosion protection layer and a tensile modulus of no more than the tensile modulus of the erosion protection layer. The additional layer may be a foam adhesive layer.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group.In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
Described herein is a method of purifying a product and recycling water comprising the following steps: (i) providing a crude product comprising at least one low molecular weight fluoroorganic compounds wherein the low molecular weight fluoroorganic compounds is partially fluorinated and comprises a polar group and/or a reactive group; (ii) extracting the impurity from the product using water to form an extract, (iii) contacting the extract with a radical-forming process to degrade the low molecular weight fluoroorganic compounds into carbon dioxide, water, fluorine ions, and optionally cations; and (iv) using the water from step (iii) in step (ii)
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.