Abstract:
Method and apparatus for producing metal-coated optical fiber involves providing a length of optical fiber having a glass fiber with or without a carbon layer surrounded by a liquid-soluble polymeric coating. The optical fiber is passed through a series of solution baths such that the fiber will contact the solution in each bath for a predetermined dwell time, the series of solution baths effecting removal of the polymer coating and subsequent electroless plating of metal on the glass fiber. The optical fiber is collected after metal plating so that a selected quantity of the metal-coated optical fiber is gathered, Preferably, the glass fiber passes through the series of solution baths without contacting anything except for the respective solution in each.
Abstract:
Method and apparatus for producing metal-coated optical fiber involves feeding a length of glass fiber through a first solution bath so as to plate a first predetermined metal on the glass fiber via electroless deposition. The length of glass fiber is passed continuously from the first solution bath to a second solution bath adapted to plate thereon a second predetermined metal via electrolytic plating such that the optical fiber contacts an electrode only after at least some of the second predetermined metal has been applied. The length of glass fiber may be passed continuously from the second solution bath to a third solution bath adapted to plate thereon a third predetermined metal via electrolytic plating.
Abstract:
Method and apparatus for producing metal-coated optical fiber involves feeding a length of glass fiber through a first solution bath so as to plate a first predetermined metal on the glass fiber via electroless deposition. The length of glass fiber is passed continuously from the first solution bath to a second solution bath adapted to plate thereon a second predetermined metal via electrolytic plating such that the optical fiber contacts an electrode only after at least some of the second predetermined metal has been applied. The length of glass fiber may be passed continuously from the second solution bath to a third solution bath adapted to plate thereon a third predetermined metal via electrolytic plating.
Abstract:
Method and apparatus for producing metal-coated optical fiber involves providing a length of optical fiber having a glass fiber with or without a carbon layer surrounded by a liquid-soluble polymeric coating. The optical fiber is passed through a series of solution baths such that the fiber will contact the solution in each bath for a predetermined dwell time, the series of solution baths effecting removal of the polymer coating and subsequent electroless plating of metal on the glass fiber. The optical fiber is collected after metal plating so that a selected quantity of the metal-coated optical fiber is gathered, Preferably, the glass fiber passes through the series of solution baths without contacting anything except for the respective solution in each.
Abstract:
A fiber optic cable comprises a plurality of elongated optical fiber units, each having an outer jacket containing multiple optical fibers. The optical fiber units are interconnected at intermittent bonding locations along an axial length of said trunk cable to form a sheathless bundle. The absence of a sheath makes the trunk cable thinner and lighter than typical trunk cable. In addition, each unit can serve as a horizontal cable at a selected branching location.
Abstract:
Apparatus and method for producing metal-coated optical fiber is provided. One step of such a method comprises providing a length of optical fiber having a glass fiber with or without a carbon layer surrounded by a polymeric, thermoplastic resin or wax coating. The optical fiber is passed through a series of solution baths such that the fiber will contact the solution in each bath for a predetermined dwell time, the series of solution baths or thermal tooling effecting removal of the polymer, thermoplastic resin or wax coating and subsequent electroless plating of metal on the glass fiber. The optical fiber is collected after metal plating so that a selected quantity of said metal-coated optical fiber is gathered. At least one of the solution baths comprises a coiled tube containing the process solution through which the glass fiber passes. Aspects of the present invention are also applicable to conventional metal wire where it is desirable to reduce physical length of the process line.
Abstract:
A fiber optic sensor comprising a first light source, a second light source, a first optical coupler operatively connected with the first light source, and a second optical coupler operatively connected with the second light source. The first optical coupler directs first and second optical waves along a first optical path into first and second ends of an optical fiber such that the first and second optical waves interfere to form a first combined optical wave. The second optical coupler directs the third and fourth optical waves along a second optical path into the first and second ends of the optical fiber such that the third and fourth optical waves interfere to form a second combined optical wave. The second optical path is longer than the first optical path by a predetermined distance. Detectors receive the first and second combined optical waves and output information with respect thereto.
Abstract:
Optical fibers and optical fiber cables are provided. An optical fiber includes an optical fiber, the optical fiber comprising a core and a cladding, and a metal coating surrounding the cladding, the metal coating extending along the entire axial length of the optical fiber. The optical fiber further includes a powder coated on an outer surface of the metal coating, wherein the powder is one of a mineral, a ceramic, or a carbon.