Abstract:
Embodiments of the present disclosure provide a method and an apparatus for processing a substrate. The apparatus has a ring assembly. The ring assembly has an edge ring and a shadow ring. The edge ring has a ring shaped body. The edge ring body has a top surface and a bottom surface. Pin holes extend through the edge ring body from the top surface to the bottom surface. The shadow ring has a ring shaped body. The shadow ring body has an upper surface and a lower surface. Sockets are formed on the lower surface, wherein the sockets in the shadow ring body align with the pin holes in the edge ring body.
Abstract:
A gas distribution apparatus is provided having a first reservoir with a first upstream end and a first downstream end and a second reservoir with a second upstream end and a second downstream end. A reservoir switch valve is in fluid communication with the first downstream end of the first reservoir and the second downstream end of the second reservoir. The reservoir switch valve operable to selectively couple the first reservoir to an outlet of the reservoir switch valve when in a first state, and couple the second reservoir to the outlet of the reservoir switch valve when in a second state. A plurality of proportional flow control valves are provided having inlets coupled in parallel to the outlet of the reservoir switch valve The plurality of proportional flow control valves have outlets configured to provide gas to a processing chamber.
Abstract:
Embodiments herein provide apparatus and methods for performing an etching process on a spacer layer with good profile control in multiple patterning processes. In one embodiment, a method for patterning a spacer layer during a multiple patterning process includes conformally forming a spacer layer on an outer surface of a patterned structure disposed on a substrate, wherein the patterned structure has having a first group of openings defined therebetween and etching the spacer layer disposed on the substrate while forming an oxidation layer on the spacer layer.
Abstract:
Embodiments may also include a residual chemical reaction diagnostic device. The residual chemical reaction diagnostic device may include a substrate and a residual chemical reaction sensor formed on the substrate. In an embodiment, the residual chemical reaction sensor provides electrical outputs in response to the presence of residual chemical reactions. In an embodiment, the substrate is a device substrate, and the sensor is formed in a scribe line of the device substrate. In an alternative embodiment, the substrate is a process development substrate. In some embodiments, the residual chemical reaction sensor includes, a first probe pad, wherein a plurality of first arms extend out from the first probe pad, and a second probe pad, wherein a plurality of second arms extend out from the second probe pad and are interdigitated with the first arms.
Abstract:
Embodiments of the present invention generally provide chamber cleaning methods for cleaning a plasma processing chamber with minimum likelihood of erosion occurred on the chamber components so as to extend service life of chamber components for semiconductor plasma applications. In one embodiment, a method of extending chamber component life in a processing chamber includes supplying a cleaning gas mixture into a plasma processing chamber, applying a RF source power to the plasma processing chamber, and applying a voltage to a substrate support assembly disposed in the processing chamber during cleaning.