Abstract:
A method of performing deposition of diamond-like carbon on a workpiece in a chamber includes supporting the workpiece in the chamber facing an upper electrode suspended from a ceiling of the chamber, introducing a hydrocarbon gas into the chamber, and applying first RF power at a first frequency to the upper electrode that generates a plasma in the chamber and produces a deposition of diamond-like carbon on the workpiece. Applying the RF power generates an electron beam from the upper electrode toward the workpiece to enhance ionization of the hydrocarbon gas.
Abstract:
A method of performing deposition of diamond-like carbon on a workpiece in a chamber includes supporting the workpiece in the chamber facing an upper electrode suspended from a ceiling of the chamber, introducing a hydrocarbon gas into the chamber, and applying first RF power at a first frequency to the upper electrode that generates a plasma in the chamber and produces a deposition of diamond-like carbon on the workpiece. Applying the RF power generates an electron beam from the upper electrode toward the workpiece to enhance ionization of the hydrocarbon gas.
Abstract:
A method of forming a layer of diamond-like carbon on a workpiece includes supporting the workpiece in a chamber with the workpiece facing an upper electrode, and forming a plurality of successive sublayers to form the layer of layer of diamond-like carbon by alternating between depositing a sublayer of diamond-like carbon on the workpiece in the chamber and treating the sublayer with a plasma of the inert gas or an electron beam from the upper electrode.
Abstract:
In a plasma reactor for processing a workpiece, an electron beam is employed as the plasma source, and sputtered metal atoms are removed from the electron beam to reduce contamination.
Abstract:
In a plasma reactor for processing a workpiece, an electron beam is employed as the plasma source, and sputtered metal atoms are removed from the electron beam to reduce contamination.