Abstract:
Methods and apparatus for a substrate processing chamber are provided herein. In some embodiments, a substrate processing chamber includes a chamber body having sidewalls defining an interior volume having a polygon shape; a selectively sealable elongated opening disposed in an upper portion of the chamber body for transferring one or more substrates into or out of the chamber body; a funnel disposed at a first end of the chamber body, wherein the funnel increases in size along a direction from an outer surface of the chamber body to the interior volume; and a pump port disposed at a second end of the chamber body opposite the funnel.
Abstract:
Methods and apparatus for increasing voltage breakdown levels of an electrostatic chuck in a process chamber. A soft anodization layer with a thickness of greater than zero and less than approximately 10 microns is formed on an aluminum base of the electrostatic chuck. The soft anodization layer remains thermally elastic in a temperature range of approximately −50 degrees Celsius to approximately 100 degrees Celsius. An alumina spray coating is then applied on the soft anodization layer. The soft anodization layer provides thermal stress relief between the aluminum base and the alumina spray coating to reduce/eliminate cracking caused by the thermal expansion rate differences between the aluminum base and the alumina spray coating.
Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.
Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.