摘要:
A deflection sensor for a microcantilever includes two sets of interdigitated fingers, one (reference) set being attached to the substrate from which the microcantilever extends and the other (movable) set being attached to the tip of the microcantilever. Together the interdigitated fingers form an optical phase grating. The deflection of the microcantilever is measured by directing a light beam against the optical phase grating and detecting the intensity of the reflected light in the first (or other) component of the resulting diffraction pattern. As the microcantilever deflects, the reference and movable fingers move relative to one another creating large variations in the intensity of the zeroth and first order components of the diffraction pattern. To eliminate "1/f" noise the deflection of the microcantilever can be measured using an AC signal.
摘要:
A method for making a silicon stylus protruding through a nitride layer is used to fabricate nitride micro-apertures, silicon styluses supported by nitride cantilever arms and charge sensitive silicon styluses supported by nitride cantilever arms. The method uses an anisotropic dry etch to define the apertures of the nitride micro-apertures and the apexes of the silicon styluses. Nitride apertures made by this method are useful for supporting micro-electronics and micro-optical devices. Surface probing devices with silicon styluses supported by nitride cantilever arms have applications in AFM and STM and are particularly useful in applications that require an electrical connection between the silicon stylus and external circuitry through the cantilever arm.
摘要:
A system for scanning and measuring a surface charge of a sample immersed in a conductive medium, such as an aqueous electrolytic solution or a gel, or positioned on a conducting plate. The system has a semiconductor with a probing surface clad in a charge-sensitive layer. The probing surface moves over the sample during scanning while a bias voltage V.sub.BIAS is applied to create a depletion layer in the semiconductor and to induce the system to alter a measurable electrical property. The electrical property is monitored with the aid of a measuring device and the measurement is correlated to the sample's surface charge. In a preferred embodiment the semiconductor is a part of a cantilever structure of the type having a probing tip and the probing surface is located on the apex of the probing tip thereby enabling examination of the topology and surface charge of the sample concurrently.
摘要:
The present invention provides an apparatus and method for nucleotide or DNA sequencing by monitoring the molecular charge configuration as the DNA moves through a protein that is capable of transcribing the DNA. The apparatus and method provides a nanoscale electrometer that immobilizes the protein. The protein receives the DNA and transcribes the DNA. The nanoscale electrometer is a sensitive device that is capable of sensing and measuring the electronic charge that is released during the transcription process. The apparatus and method of the present invention further provides monitoring means that are attached to the nanoscale electrometer to monitor the electronic charge configuration as the DNA moves through the protein. Once the electronic charge configuration is established, a correlation is computed, using computing means, between the electronic charge configuration and a nucleotide signature of the DNA.
摘要:
A bimorph spiral which exhibits a shape-altering response to thermal radiation and is dimensioned to have a focussing effect on light, such as a visible light, by acting as a quasi-Fresnel element. The focussing effect varies as the shape of the bimorph spiral changes due to absorption of thermal radiation. An array of such bimorph spirals can be used for efficient, high-resolution and rapid uncooled photothermal spectroscopy.
摘要:
A harmonic cantilever for use in an atomic force microscope includes a cantilever arm and a probe tip. The cantilever arm has a shape selected to tune the fundamental resonance frequency or a resonance frequency of a selected higher order mode so that the fundamental and higher-order resonance frequencies have an integer ratio or near integer ratio. In one embodiment, the cantilever arm can be shaped to tune the fundamental resonance frequency. Alternately, the cantilever arm can include a geometric feature for tuning the resonance frequency of the fundamental mode or the selected higher order mode. An imaging method using the harmonic cantilever is disclosed whereby signals at the higher harmonics are measured to determine the material properties of a sample. In other embodiment, a cantilever includes a probe tip positioned at a location of minimum displacement of unwanted harmonics for suppressing signals associated with the unwanted harmonics.
摘要:
A thick column is formed by masking and etching a substrate, and the column is thinned to a very small diameter (e.g., .ltoreq.5 nm) by oxidizing the column and removing the oxide layer. A metal layer is deposited on the surface of the substrate, and the column and substrate are etched to form a pit. The backside of the substrate is etched to form an aperture surrounded by the metal layer. Alternatively, the metal layer is removed and a dopant layer is implanted into the substrate, followed by the etching of the backside, leaving an aperture surrounded by the dopant layer. In a second alternative, the oxidized column is broken from the substrate, and the backside is etched, leaving an aperture surrounded by an oxide layer. These processes can be used to fabricate apertures of very small and reproducible dimensions for such instruments as near field scanning optical microscopes and scanning ion conductance microscopes.
摘要:
A harmonic cantilever for use in a tapping-mode atomic force microscope includes a cantilever arm and a probe tip. The cantilever arm has a shape selected to tune the fundamental resonance frequency or a resonance frequency of a selected higher order mode so that the fundamental and higher-order resonance frequencies have an integer ratio or near integer ratio. In one embodiment, the cantilever arm can be shaped to tune the fundamental resonance frequency. Alternately, the cantilever arm can include a geometric feature for tuning the resonance frequency of the fundamental mode or the selected higher order mode. An imaging method using the harmonic cantilever is disclosed whereby signals at the higher harmonics are measured to determine the material properties of a sample. In other embodiment, a cantilever includes a probe tip positioned at a location of minimum displacement of unwanted harmonics for suppressing signals associated with the unwanted harmonics.
摘要:
This microscope apparatus comprises two probes. The first probe is configured to interact with and measure characteristics of surfaces within an effective measurement distance of the first probe. This probe could be contact type, non-contact type, constant force mode, or constant height mode. A combination of actuation devices positions the first probe over a surface of a sample. The surface is scanned at high speeds in search of a target area. When a target area is found, a scanner moves the sample so that a second contact type probe with a sharp tip is positioned over the target area. The second probe is activated and the target area is scanned at low speeds and high resolution. The first and second probes are part of the same probe assembly. The probe assembly of the present invention does not require probe replacement as frequently as current assemblies because the sharp tip is used only at low speeds and high resolution configurations. Thus, the sharp tip wears slower than it would if the sharp tip was used to find the target feature as well.
摘要:
A scanning probe microscope is used to pattern a layer of resist, and the pattern is transferred to a substrate. First, an underlayer formed of, for example, polyimide and a top layer formed of, for example, amorphous silicon are deposited on the substrate. A pattern is formed on the top layer using the tip of the cantilever in a scanning probe microscope. The pattern may consist of an oxide formed by an electric field at the cantilever tip. The top layer is then etched using the pattern as a mask and using an etchant that is selective against the underlayer. The underlayer is then etched using an etchant that is selective against the top layer and substrate. The substrate is etched with an etchant that removes the top layer but is selective against the underlayer. Finally, the underlayer is removed.