摘要:
A method for forming a metal carbide layer begins with providing a substrate, an organometallic precursor material, at least one doping agent such as nitrogen, and a plasma such as a hydrogen plasma. The substrate is placed within a reaction chamber; and heated. A process cycle is then performed, where the process cycle includes pulsing the organometallic precursor material into the reaction chamber, pulsing the doping agent into the reaction chamber, and pulsing the plasma into the reaction chamber, such that the organometallic precursor material, the doping agent, and the plasma react at the surface of the substrate to form a metal carbide layer. The process cycles can be repeated and varied to form a graded metal carbide layer.
摘要:
Chemical phase deposition processes utilizing organometallic precursors to form thin films are herein described. The organometallic precursors may include a single metal center or multiple metal centers. The chemical phase deposition may be chemical vapor deposition (CVD), atomic layer deposition (ALD), or hybrid CVD and ALD. The use of these chemical phase deposition processes with the organometallic precursors allows for the conformal deposition of films within openings having widths of less than 100 nm and more particularly less than 50 nm to form thin films such as barrier layers, seed layers, and adhesion layers.
摘要:
Chemical phase deposition processes utilizing organometallic precursors to form thin films are herein described. The organometallic precursors may include a single metal center or multiple metal centers. The chemical phase deposition may be chemical vapor deposition (CVD), atomic layer deposition (ALD), or hybrid CVD and ALD. The use of these chemical phase deposition processes with the organometallic precursors allows for the conformal deposition of films within openings having widths of less than 100 nm and more particularly less than 50 nm to form thin films such as barrier layers, seed layers, and adhesion layers.
摘要:
Organometallic precursors and methods for deposition on a substrate in seed/barrier applications are herein disclosed. In some embodiments, the organometallic precursor is a ruthenium-containing, tantalum-containing precursor or combination thereof and may be deposited by atomic layer deposition, chemical vapor deposition and/or physical vapor deposition.
摘要:
Organometallic precursors and methods for deposition on a substrate in seed/barrier applications are herein disclosed. In some embodiments, the organometallic precursor is a ruthenium-containing, tantalum-containing precursor or combination thereof and may be deposited by atomic layer deposition, chemical vapor deposition and/or physical vapor deposition.
摘要:
A method comprising introducing an organometallic precursor according to a first set of conditions in the presence of a substrate; introducing the organometallic precursor according to a different second set of conditions in the presence of the substrate; and forming a layer comprising a moiety of the organometallic precursor on the substrate according to an atomic layer deposition process. A system comprising a computing device comprising a microprocessor, the microprocessor coupled to a printed circuit board, the microprocessor comprising a substrate having a plurality of circuit devices with electrical connections made to the plurality of circuit devices through interconnect structures formed in a plurality of dielectric layers formed on the substrate and each of the plurality of interconnect structures separated from the plurality of dielectric layers by a barrier layer formed according to an atomic layer deposition process.
摘要:
A method including forming an interconnect of single-walled carbon nanotubes on a sacrificial substrate; transferring the interconnect from the sacrificial substrate to a circuit substrate; and coupling the interconnect to a contact point on the circuit substrate. A method including forming a nanotube bundle on a circuit substrate between a first contact point and a second contact point, the nanotube defining a lumen therethrough; filling a portion of a length of the lumen of the nanotube bundle with an electrically conductive material; and coupling the electrically conductive material to the second contact point. A system including a computing device comprising a microprocessor, the microprocessor coupled to a printed circuit board, the microprocessor including a substrate having a plurality of circuit devices with electrical connections made to the plurality of circuit devices through interconnect structures including carbon nanotube bundles.
摘要:
A method for forming an interconnect on a semiconductor substrate comprises providing at least one carbon nanotube within a trench, etching at least one portion of the carbon nanotube to create an opening, conformally depositing a metal layer on the carbon nanotube through the opening, and forming a metallized contact at the opening that is substantially coupled to the carbon nanotube. The metal layer may be conformally deposited on the carbon nanotube using an atomic layer deposition process or an electroless plating process. Multiple metal layers may be deposited to substantially fill voids within the carbon nanotube. The electroless plating process may use a supercritical liquid as the medium for the plating solution. The wetting behavior of the carbon nanotube may be modified prior to the electroless plating process to increase the hydrophilicity of the carbon nanotube.
摘要:
A method for forming a metal interconnect comprises providing a dielectric layer on a substrate within a reaction chamber where the dielectric layer includes a trench, conformally depositing a barrier layer on the dielectric layer within the trench, conformally depositing a Cu—Al alloy layer on the barrier layer within the trench, depositing a copper layer to fill the trench, and planarizing the copper layer to form the metal interconnect. The Cu—Al alloy layer may be formed by sequential ALD or CVD deposition of an aluminum layer and a copper layer followed by an annealing process. Alternately, the Cu—Al alloy layer may be formed in-situ by co-pulsing the aluminum and copper precursors.
摘要:
A copper interconnect oh a semiconductor substrate comprises a dielectric layer having a trench, a noble metal layer on the dielectric layer within the trench, and a copper interconnect on the noble metal layer. The noble metal layer has a thickness that is between 3 Å and 100 Å and a density that is greater than or equal to 5 g/cm3. The copper interconnect may be formed by etching a trench into the dielectric layer, pulsing a noble metal containing precursor proximate to the semiconductor substrate, and pulsing a reactive gas proximate to the semiconductor substrate, wherein the reactive gas reacts with the precursor to form a noble metal layer on the dielectric layer. A copper layer may then be deposited atop the noble metal layer and planarized. The noble metal layer functions as a barrier to copper diffusion and provides a surface upon which the copper metal can nucleate.