Abstract:
A clock doubler includes a first NAND gate having a first input for receiving a clock input signal and a second input, a second NAND gate having a first input and a second input for receiving a complement of the clock input signal, an output NAND gate having a first and second inputs coupled to outputs of the first and second NAND gates, respectively, and an output for providing a clock output signal, an inverter chain having an input for receiving the clock input signal and responsive to first and second control signals to selectively provide a first true output to the first input of the second NAND gate, and a second complementary output to the second input of the first NAND gate, and a control signal generation circuit providing the first and second control signals in response to the outputs of the first and second NAND gates.
Abstract:
A native edge-triggered master-slave flip-flop exploits native latch topologies to create an edge-triggered master-slave flip-flop using a single clock phase having substantially reduced clock power consumption and substantially improved hold timing margin as compared to the clock power consumption and hold timing margin of a conventional master-slave flip-flop and other low power flip-flops.
Abstract:
Adaptive decoder-drive encoder reconfiguration techniques are described. In one example, techniques include detecting an operational condition at a consumer using a sensor, the consumer receiving a communication of digital content from an encoder; generating an adaptation instruction by the decoder based on the detecting; transmitting the adaptation instruction by the decoder for receipt by the encoder; and receiving an adapted communication of the digital content generated by the encoder, the adapted communication caused by reconfiguration of the encoder based on the adaptation instruction received from the decoder.
Abstract:
Various codecs and methods of using the same are disclosed. In one aspect, a method of processing video data is provided that includes encoding or decoding the video data with a codec in aggressive deployment and correcting one or more errors in the encoding or decoding wherein the error correction includes re-encoding or re-decoding the video data in a non-aggressive deployment or generating a skip picture.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
A clock doubler includes a first NAND gate having a first input for receiving a clock input signal and a second input, a second NAND gate having a first input and a second input for receiving a complement of the clock input signal, an output NAND gate having a first and second inputs coupled to outputs of the first and second NAND gates, respectively, and an output for providing a clock output signal, an inverter chain having an input for receiving the clock input signal and responsive to first and second control signals to selectively provide a first true output to the first input of the second NAND gate, and a second complementary output to the second input of the first NAND gate, and a control signal generation circuit providing the first and second control signals in response to the outputs of the first and second NAND gates.