Abstract:
A laminate and process of making the laminate is disclosed comprising: a surgical mesh having first and second surfaces; and an adhesive structure having adhesive and non-adhesive surfaces, wherein the non-adhesive surface of the adhesive structure is laminated to at least one of said first and second surfaces of said surgical mesh, and the adhesive surface of said adhesive structure has protrusions extending therefrom comprising a resin having a Young's modulus of greater than 17 MPa, which protrusions are of sufficiently low diameter to promote adhesion by increasing physical attractive forces between the adhesive structure and a target surface, as measured by shear adhesion.
Abstract:
A laminate and process of making the laminate is disclosed comprising: a surgical mesh having first and second surfaces; and an adhesive structure having adhesive and non-adhesive surfaces, wherein the non-adhesive surface of the adhesive structure is laminated to at least one of said first and second surfaces of said surgical mesh, and the adhesive surface of said adhesive structure has protrusions extending therefrom comprising a resin having a Young's modulus of greater than 17 MPa, which protrusions are of sufficiently low diameter to promote adhesion by increasing physical attractive forces between the adhesive structure and a target surface, as measured by shear adhesion.
Abstract:
An implant having an adhesive structure comprising a planar surface having two sides and rectangular cuboid-based protrusions having pyramidal tips extending from at least one of said sides, optionally having a porous basic supporting structure, and methods of making and using such implants.
Abstract:
The present disclosure relates to a method of forming a metallic layer having pores extending therethrough, the method comprising the steps of: (a) contacting a cathode substrate with an electrolyte solution comprising at least one cation; reducing the cation to deposit the metallic layer on a surface of the cathode substrate; and (c) generating a plurality of non-conductive regions on the cathode substrate surface during reducing step (b); wherein the deposition of the metallic layer is substantially prevented on the non-conductive regions on the cathode substrate surface to thereby form pores extending through the deposited metallic layer. The present disclosure further provides a metallic porous membrane fabricated by the disclosed process.
Abstract:
An implant having an adhesive structure comprising a planar surface having two sides and rectangular cuboid-based protrusions having pyramidal tips extending from at least one of said sides, optionally having a porous basic supporting structure, and methods of making and using such implants.
Abstract:
The present disclosure relates to a method of forming a metallic layer having pores extending therethrough, the method comprising the steps of: (a) contacting a cathode substrate with an electrolyte solution comprising at least one cation; reducing the cation to deposit the metallic layer on a surface of the cathode substrate; and (c) generating a plurality of non-conductive regions on the cathode substrate surface during reducing step (b); wherein the deposition of the metallic layer is substantially prevented on the non-conductive regions on the cathode substrate surface to thereby form pores extending through the deposited metallic layer. The present disclosure further provides a metallic porous membrane fabricated by the disclosed process.
Abstract:
Synthetic polymer substrates comprising a hierarchical surface structure of multiple domes and multiple pillars on said domes, wherein said substrate is a synthetic polymer film, said domes have diameters in the range from about 5 μm to about 400 μm, heights in the range from about 2.5 μm and about 500 μm, and said pillars have diameters in the range from about 20 nm to about 5 μm and aspect ratios of from about 2 to about 50, and methods of making and using them.