摘要:
A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4% of Al, about 10 to about 20% of W, about 10 to about 40% Ni, about 5 to 20% Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
摘要:
A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
摘要:
A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
摘要:
A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
摘要:
The present invention provides a friction stir welding apparatus operable for welding one or more metals, metal alloys, or other materials. The friction stir welding apparatus includes a pin tool holder, a shoulder having a surface coupled to the pin tool holder, and a pin tool coupled to the pin tool holder, the pin tool at least partially protruding from the surface of the shoulder, wherein the pin tool is made of a consumable pin tool material. Optionally, the shoulder rotates at a predetermined rotational speed and is retractable into/extendable from the pin tool holder at a substantially constant rate. Optionally, the shoulder is also made of a consumable shoulder material that is at least partially incorporated into the volume of a joint to be welded. The consumable shoulder material comprises a material that is the same as, similar to, or dissimilar from one or more materials comprising a workpiece to be friction stir welded. Preferably, the pin tool rotates at a predetermined rotational speed and is retractable into/extendable from the surface of the shoulder at a substantially constant rate. The consumable pin tool material is at least partially incorporated into the volume of the joint to be welded. The consumable pin tool material comprises a material that is the same as, similar to, or dissimilar from one or more materials comprising the workpiece to be friction stir welded.
摘要:
An article comprising a multilayered structure comprising a series of magnetic layers is provided. The magnetic layers comprise a magnetic material, and an insulating layer is disposed between successive magnetic layers. Each magnetic layer has a thickness of at least about 2 micrometers and magnetic material has an average grain size less than 200 nm. Also provided is a method for making the article.
摘要:
A process for repairing a turbine component comprises overlaying a preform of a brazing material onto a surface of the turbine component, wherein the surface comprises a damaged portion; securing the preform of a brazing material to the surface; and heating the turbine component to a temperature effective to form a brazed joint between the brazing material and the turbine component. Also disclosed is a repaired turbine component repaired by the process.
摘要:
A nanocomposite comprising a plurality of nanoparticles dispersed in a molybdenum-based matrix, and an x-ray tube component formed from such a nanocomposite. The nanocomposite contains volume fraction of nanoparticle dispersoids in a range from about 2 volume percent to about 20 volume percent. A method of making such molybdenum-based nanocomposites is also disclosed.
摘要:
A superalloy-containing structural component includes a superalloy matrix, and a plurality of hard phase nanoparticles dispersed at grain boundaries within the superalloy matrix, wherein the plurality of hard phase nanoparticles dispersed at the grain boundaries comprise about 1 volume percent to about 30 volume percent of the structural component, and wherein the superalloy matrix and the plurality of hard phase nanoparticles dispersed at the grain boundaries within the base superalloy matrix have been thermo-mechanically processed to form the structural component. A method for making a structural component includes introducing dislocations into a superalloy particle matrix effective to form new grain boundaries within a plurality of superalloy particles, introducing hard phase dispersoid nanoparticles at a plurality of grain boundaries of the superalloy particles effective to pin the grain boundaries, and thermo-mechanically processing the superalloy particles and hard phase dispersoid nanoparticles to form the superalloy-containing structural component.
摘要:
A method of making a soft magnetic material with ultra-fine grain structure is provided. The method includes the steps of: providing a soft magnetic starting material; and deforming the soft magnetic starting material within a dynamic recrystallization processing zone to form a billet having a grain size less than about 200 nm. An article comprising a magnetic material is provided, wherein the article is formed by: providing a soft magnetic starting material; and deforming the soft magnetic starting material within a dynamic recrystallization processing zone to form a billet having a grain size less than about 200 nm.