Abstract:
A light source apparatus includes: a light emitting element including a plurality of light emitting modules; a resonator; a transmitting-reflecting module which, being provided in an optical path between the light emitting element and the resonator, reflects one portion of light traveling from the resonator, and transmits another one portion; a current supply module; and at least one wiring module which connects the current supply module and the light emitting element, wherein a normal of a surface of the transmitting-reflecting module on which the light from the resonator falls incident is tilted in a specific direction relative to a main beam of a light flux which travels between the transmitting-reflecting module and the resonator, and at least one of the wiring modules is provided on a side of the light emitting modules opposite to a side of the specific direction.
Abstract:
A gas laser oscillating unit having a gas junction part where gas flow may be stable, whereby a stable laser beam output and/or a laser beam that does not fluctuate very much may be achieved. The laser gas, flowing through first and second excitation parts, is introduced into the first and second tapered gas flow passages. After that, the two gas flows are mixed at or near the center point of a gas junction part and the mixed gas flows in a next flow passage. Then, one of the gas flows from the first excitation part is biased toward the −X direction by a first biasing member arranged in the first gas flow passage, and the other gas flow from the second excitation part is biased toward the +X direction by a second biasing member arranged in the second gas flow passage.
Abstract:
A fluid machine including a shaft and an impeller, wherein the impeller has a shaft bore into which the shaft is inserted, and wherein the impeller is coupled to the shaft by an interference fit. The fluid machine further includes a positioning part provided between the shaft and the impeller, for positioning the impeller at a predetermined position on the shaft; a fitting part provided inside the shaft bore and adjacent to the positioning part, for forming the interference fit between the shaft and the impeller; and a loose-insertion part provided inside the shaft bore and adjacent to the fitting part, for forming a clearance between the shaft and the impeller.
Abstract:
A spatial light modulation device includes: a light modulation unit which modulates light according to an image signal; and a first electrode and a second electrode provided on a surface of one of an optical element disposed either on the entrance side of the light modulation unit or the exit side of the light modulation unit and the light modulation unit. Voltage is applied to the first electrodes and the second electrodes.
Abstract:
A laser apparatus including a laser oscillating section, electric power source, a laser-power measuring section and a power-source controlling section. The power-source controlling section includes a power-supply instructing section instructing the power source to perform an electric-power supplying operation for the laser oscillating section in response to a laser-oscillation command value; and a function calculating section determining, based on different laser-oscillation command values given to the power-supply instructing section and different laser-power measured values obtained by the laser-power measuring section, a function approximatively representing a correlation of the laser-power measured values relative to the laser-oscillation command values. The power-supply instructing section executes, after the function is determined, a correcting process for a laser-oscillation command value based on the function, and instructs the electric power source to perform the electric-power supplying operation in response to the corrected laser-oscillation command value.
Abstract:
A laser processing device (100) includes a laser oscillator (2), a laser machine (11) and a control means (1) for controlling the laser oscillator and the laser machine. The control means includes a storage means (50) for storing the processing program (60) for the work to be processed. The storage means has stored therein a required laser gas pressure value (72) for the laser oscillator in the laser processing operation, which value is determined in accordance with the processing specifics the work (20). The control means includes a laser gas pressure command transmission means (52) for transmitting a laser gas pressure command based on the required laser gas pressure value to the laser oscillator. This further improves the processing performance of the laser processing apparatus. Further, the control means may include a required laser gas pressure value adjusting means (55) for adjusting the required laser gas pressure value.
Abstract:
A projector includes a plurality of light modulation devices and a cooling device. The cooling device includes a cooling fan configured to introduce and discharge air, and a duct configured to guide air received from the cooling fan toward the plural light modulation devices. The duct includes a first duct portion configured to allow the air to flow through the light modulation devices from sides of the light modulation devices, and a second duct portion which communicates with the first duct portion and guides a part of the air flowing through the first duct portion toward devices other than the light modulation devices.
Abstract:
A laser beam source device includes: a light source which emits light having fundamental wavelength; a wavelength conversion element which converts the light having fundamental wavelength into light having conversion wavelength; a resonance element which transmits first light converted into the conversion wavelength light and reflects light not converted; an optical path conversion element which releases second light contained in the light reflected by the resonance element and converted into the conversion wavelength light in the same direction as the direction of the first light, and releases the light not converted toward the light source; and a supporting member. The resonance element is disposed in such a position that one end surface of the resonance element on the second light side is shifted to the supporting member from one end surface of the wavelength conversion element on the second light side.
Abstract:
A light source unit includes: an arc tube having a light-emitting portion; a secondary reflector covering part of the periphery of the light-emitting portion and being provided with a secondary reflecting surface for reflecting light emitted from the light-emitting portion; a primary reflector having a primary reflecting surface for reflecting the light emitted from the light-emitting portion and the light reflected from the secondary reflector; a first electrode; and a second electrode; wherein the second electrode is arranged at a position which causes an ionic wind to be induced by applying a voltage between the second electrode and the first electrode and causes air between the secondary reflecting surface and the light-emitting portion to flow, and either one of the first electrode or the second electrode is arranged between the arc tube and the secondary reflector.
Abstract:
A light source device includes a light emitting tube having a light emitting section that emits light, a first sealing section on one side of the light emitting section formed integrally with the light emitting section, and a second sealing section on the other side of the light emitting section formed integrally with the light emitting section. A secondary reflecting mirror having a secondary reflecting surface covers part of a periphery of the light emitting section and reflects light emitted from the light emitting section. A primary reflecting mirror having a primary reflecting surface reflects the light emitted from the light emitting section and the light reflected by the secondary reflecting mirror. The secondary reflecting mirror has a first reference plane defined by a first boundary line as a boundary between the light emitting section and the first sealing section, which does not intersect with the secondary reflecting surface