摘要:
A microelectromechanical systems device having an electrical interconnect between circuitry outside the device and at least one of an electrode and a movable layer within the device. At least a portion of the electrical interconnect is formed from the same material as a conductive layer between the electrode and a mechanical layer of the device. In an embodiment, this conductive layer is a sacrificial layer that is subsequently removed to form a cavity between the electrode and the movable layer. The sacrificial layer is preferably formed of molybdenum, doped silicon, tungsten, or titanium. According to another embodiment, the conductive layer is a movable reflective layer that preferably comprises aluminum.
摘要:
A microelectromechanical systems device having an electrical interconnect between circuitry outside the device and at least one of an electrode and a movable layer within the device. At least a portion of the electrical interconnect is formed from the same material as a conductive layer between the electrode and a mechanical layer of the device. In an embodiment, this conductive layer is a sacrificial layer that is subsequently removed to form a cavity between the electrode and the movable layer. The sacrificial layer is preferably formed of molybdenum, doped silicon, tungsten, or titanium. According to another embodiment, the conductive layer is a movable reflective layer that preferably comprises aluminum.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.