Abstract:
This disclosure provides apparatus, systems, and methods for updating display devices. In one aspect, a multi-line addressing mode may be used to update the display by writing data to multiple display lines in order to increase display refresh rate and reduce power consumption. In another aspect, a line order addressing mode may be used to write data to display lines in a random or quasi-random sequence in order to minimize visible display updates. In another aspect, a color processing mode may be used to forego processing color information in order to reduce power consumption and processing time.
Abstract:
A method of driving electromechanical devices such as interferometric modulators includes applying a voltage along a common line to release the electromechanical devices along the common line, followed by applying an address voltage along the common line to actuate selected electromechanical devices along the common line based on voltages applied along segment lines. Hold voltages may be applied along common lines between applications of release and address voltages, and the segment voltages may be selected to be sufficiently small that the segment voltages will not affect the state of the electromechanical devices along other common lines not being written to.
Abstract:
A display has sufficient resolution to present images as they would appear on other types of image output devices, such as types of printers or displays. In response to a user signal indicating a type of image output devices, data defining an image is used to automatically obtain version data defining a version of the image. The version can be presented on the display to show the image as it would appear when presented by an image output device of the indicated type. The user can indicate a type by selecting a menu item or a button or by providing a sequence of keystrokes. In response to a user signal indicating a parameter value, a version can be presented showing the image as it would appear when presented with the value. When a satisfactory image is displayed, the user can then request presentation of the image by a device of the indicated type. Either data defining the input image from which the displayed image is a version or data defining the currently displayed image can then be transformed to obtain a presentation version for the image output device. A copier or printer that includes the display can use it to perform print previewing.
Abstract:
A light sensing apparatus adaptable for inclusion in an array of such apparatus is operable independent of polling cycle providing a more accurate sensing of the patterns of illumination incident on an array of such apparatus. The apparatus facilitates utlizing each address line to simultaneously initialize one row of apparatus while enabling the subsequent row of apparatus. The apparatus is also compatible with elements capable of providing gain, given that the photosensitive element is separate from the path across which voltage or current is measured. The apparatus may be fabricated of amorphous silicon. The light sensing cell includes an input terminal, an output terminal, a conductive element electrically interconnecting the input and output terminals, a multiple-state sensing device, means for establishing an initial state of the sensing device, means for changing the initial state of the sensing device in response to the incidence of electromagnetic or ionizing radiation (e.g., visible light) thereupon, and means connected to the conductive element and to the sensing device for modifying the conductance of the conductive element as a function of the state of the sensing device. A color filter may be interposed between a light source and the circuit or the array to provide color differentiation. Use of other filters and/or sensor types facilitates sensing electromagnetic radiation outside the visible light spectrum.
Abstract:
A method of driving electromechanical devices such as interferometric modulators includes applying a voltage along a common line to release the electromechanical devices along the common line, followed by applying an address voltage along the common line to actuate selected electromechanical devices along the common line based on voltages applied along segment lines. Hold voltages may be applied along common lines between applications of release and address voltages, and the segment voltages may be selected to be sufficiently small that the segment voltages will not affect the state of the electromechanical devices along other common lines not being written to.
Abstract:
This disclosure provides systems, methods and apparatus for writing a display image to a display having an array of pixels according to a selected driving sequence. In one aspect, display elements in a row are driven using a tall and narrow voltage pulse. This allows display elements of a row to be driven in a shorter line time.
Abstract:
This disclosure provides systems and apparatuses having pixels connected to various drive lines. In one implementation, a passive matrix display apparatus comprises a plurality of display elements, arranged in rows and columns, each common line driving display elements of a single color, wherein at least one common line of the plurality of common lines is coupled to display elements in two or more rows to drive the two or more rows, and a plurality of sets of multiple segment lines, each set of multiple segment lines associated with a column of display elements, wherein one segment line of the set of multiple segment lines addresses display elements of a given color of one row along the column and an other segment line in the set of multiple segment lines addresses display elements of the given color of another row along the column.
Abstract:
A display device including a plurality of optical modulators and a plurality of filter elements on a reflective side of the plurality of optical modulators is provided. The plurality of optical modulators includes a first set of optical modulators and a second set of optical modulators. Each optical modulator of the plurality of optical modulators is configured to be selectively switched among at least a first state, a second state, and a third state. Each state has a different spectral reflectance. The plurality of filter elements includes a first set of filter elements corresponding to the first set of optical modulators and a second set of filter elements corresponding to the second set of optical modulators. The first set of filter elements has a different spectral transmittance than the second set of filter elements.
Abstract:
A product such as a display includes a first substrate on which array circuitry and multiplexer circuitry are formed and also includes one or more integrated circuit (IC) structures attached to the first substrate. The array circuitry includes N data lines, each driven by multiplexed signals, where N is greater than 32. The multiplexer circuitry provides the multiplexed signals in response to analog drive signals from P analog input leads and multiplexer control signals from Q control leads, where P is less than N but not less than 32 and where Q is less than N but not less than N/P. Each of R IC structures can includes a single crystal substrate, each with digital-to-analog converting (DAC) circuitry, where R is greater than zero. Each substrate has at least S analog output leads, where S is not less than 32. Together, the R IC structures have T analog output leads, where T is greater than P, and each of the P analog input leads is paired with and connected to one of the T analog output leads. The array circuitry and multiplexer circuitry can include polysilicon thin-film transistors (TFTs) on a glass substrate. The IC structure can be attached to the glass substrate using tape-automated bonding (TAB) or chip-on-glass (COG) techniques. This architecture makes it possible to use commercially available DAC ICs and significantly reduces the number of external chips required to drive the array as the number of pixels in the array increases.
Abstract:
Switched capacitor analog circuits (such as integrators, amplifiers and digital-to-analog converters) constructed from polysilicon thin film transistors and capacitors are disclosed. The circuits are commonly implemented using conventional single crystal CMOS technologies, but this is the first time they have been realized using polysilicon TFT CMOS. The performance of the circuits is inevitably worse than that of conventional single crystal CMOS devices, but is nevertheless adequate for many large area applications. The circuits can be fabricated on large area substrates and integrated with, for example, flat panel displays, pagewidth optical scan arrays, or pagewidth printheads, offering improvements in the functionality and performance of those devices. Charge redistribution amplifiers and digital-to-analog converters are shown to operate with settling times ranging from a few microseconds to a few tens of microseconds, even with large capacitive loads, despite the relatively poor performance of polysilicon TFTs in comparison to conventional MOSFETS. Better than 8-bit accuracy is also demonstrated for the digital-to-analog converters.