摘要:
A semiconductor device comprising: a p or p+ doped portion; an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion; an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and said at least one doped portion meet; and at least one additional portion which is arranged for significantly reducing the variation of the electric field strength in said region when a voltage difference is applied between the doped portions.
摘要:
A semiconductor device including a p or p+ doped portion and an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion. The device further includes an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and the at least one doped portion meet. The device further includes at least one additional portion, wherein the at least one additional portion is located such that, when the doped portions and the at least one additional portion are biased, the electrical potential lines leave the semiconductor drift portion homogeneously.
摘要:
A semiconductor device comprising: a p or p+ doped portion; an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion; an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and said at least one doped portion meet; and at least one additional portion which is arranged for significantly reducing the variation of the electric field strength in said region when a voltage difference is applied between the doped portions.
摘要:
A semiconductor device including a p or p+ doped portion and an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion. The device further includes an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and the at least one doped portion meet. The device further includes at least one additional portion, wherein the at least one additional portion is located such that, when the doped portions and the at least one additional portion are biased, the electrical potential lines leave the semiconductor drift portion homogeneously.
摘要:
The present invention provides semiconductor devices and methods for fabricating the same, in which superior dielectric termination of drift regions is accomplished by a plurality of intersecting trenches with intermediate semiconductor islands. Thus, a deep trench arrangement can be achieved without being restricted by the overall width of the isolation structure.
摘要:
A Metal Oxide Semiconductor (MOS) transistor comprising: a source; a gate; and a drain, the source, gate and drain being located in or on a well structure of a first doping polarity located in or on a substrate; wherein at least one of the source and the drain comprises a first structure comprising: a first region forming a first drift region, the first region being of a second doping polarity opposite the first doping polarity; a second region of the second doping polarity in or on the first region, the second region being a well region and having a doping concentration which is higher than the doping concentration of the first region; and a third region of the second doping polarity in or on the second region. Due to the presence of the second region the transistor may have a lower ON resistance when compared with a similar transistor which does not have the second region. The breakdown voltage may be influenced only to a small extent.
摘要:
A Metal Oxide Semiconductor (MOS) transistor comprising: a source; a gate; and a drain, the source, gate and drain being located in or on a well structure of a first doping polarity located in or on a substrate; wherein at least one of the source and the drain comprises a first structure comprising: a first region forming a first drift region, the first region being of a second doping polarity opposite the first doping polarity; a second region of the second doping polarity in or on the first region, the second region being a well region and having a doping concentration which is higher than the doping concentration of the first region; and a third region of the second doping polarity in or on the second region. Due to the presence of the second region the transistor may have a lower ON resistance when compared with a similar transistor which does not have the second region. The breakdown voltage may be influenced only to a small extent.
摘要:
The disclosed method of manufacturing (110, 120, 130, 140) a semiconductor device (12) has the steps (112, 114, 116) of: forming at least one wall (33) of a body (44) of the semiconductor device (12) by etching at least one trench (22) for a gate (42) of the semiconductor device (12) into the body (44); and performing a slanted implantation doping (126, 128) into the at least one wall (33) of the body (44), after the etching (112) of the at least one trench (22) and prior to coating the at least one trench (22) with an insulating layer (29). A semiconductor device (12) comprises at least one trench (22) for a gate (42) of the semiconductor device (12); and a body (44) having at least one wall (33) of the at least one trench (22), wherein a deviation (64) of a doping concentration (62) along a distance (66) in depth-direction (do) of the at least one trench (22) in a surface (33) of the at least one wall (33) is less than ten percent of a maximum value (68) of the doping concentration (62) along the distance (66).
摘要:
The present invention provides semiconductor devices and methods for fabricating the same, in which superior dielectric termination of drift regions is accomplished by a plurality of intersecting trenches with intermediate semiconductor islands. Thus, a deep trench arrangement can be achieved without being restricted by the overall width of the isolation structure.
摘要:
The disclosed method of manufacturing (110, 120, 130, 140) a semiconductor device (12) has the steps (112, 114, 116) of: forming at least one wall (33) of a body (44) of the semiconductor device (12) by etching at least one trench (22) for a gate (42) of the semiconductor device (12) into the body (44); and performing a slanted implantation doping (126, 128) into the at least one wall (33) of the body (44), after the etching (112) of the at least one trench (22) and prior to coating the at least one trench (22) with an insulating layer (29). A semiconductor device (12) comprises at least one trench (22) for a gate (42) of the semiconductor device (12); and a body (44) having at least one wall (33) of the at least one trench (22), wherein a deviation (64) of a doping concentration (62) along a distance (66) in depth-direction (do) of the at least one trench (22) in a surface (33) of the at least one wall (33) is less than ten percent of a maximum value (68) of the doping concentration (62) along the distance (66).