摘要:
A method of determining throttle flow in a fuel delivery system is disclosed. First, a time-efficient throttle flow data collection method is described. The collection method uses a sonic nozzle flow bench to measure airflow as a function of throttle angle and pressure in a manner analogous to on-engine dynamometer throttle flow characterization. Opening each sonic nozzle combination, then recording throttle downstream pressure and computed nozzle flow allows data to be taken in a fraction of the time normally needed. In conventional methods, the estimated airflow rate as a function of throttle angle differs from the measured airflow rate because the leak area is incorrect. The method of the invention correctly determines the estimated throttle airflow rate by using a low pass filtering technique to adjust the estimated airflow rate to eventually equal the measured airflow rate, particularly at small throttle angles.
摘要:
A method for providing intake air to an engine in a vehicle comprises delivering compressed fresh air and EGR to the engine via first and second throttle valves coupled to an intake manifold of the engine. During a higher engine-load condition, an EGR exhaust flow is cooled in a heat exchanger and the cooled EGR exhaust flow is admitting to the intake manifold. During a lower engine-load condition, fresh air is warmed in the heat exchanger, and the warmed fresh air is admitted to the intake manifold.
摘要:
A method for providing intake air to an engine in a vehicle comprises delivering compressed fresh air and EGR to the engine via first and second throttle valves coupled to an intake manifold of the engine. During a higher engine-load condition, an EGR exhaust flow is cooled in a heat exchanger and the cooled EGR exhaust flow is admitting to the intake manifold. During a lower engine-load condition, fresh air is warmed in the heat exchanger, and the warmed fresh air is admitted to the intake manifold.
摘要:
A method for providing intake air to an engine in a vehicle comprises delivering compressed fresh air and EGR to the engine via first and second throttle valves coupled to an intake manifold of the engine. During a higher engine-load condition, an EGR exhaust flow is cooled in a heat exchanger and the cooled EGR exhaust flow is admitting to the intake manifold. During a lower engine-load condition, fresh air is warmed in the heat exchanger, and the warmed fresh air is admitted to the intake manifold.
摘要:
A method for providing intake air to an engine in a vehicle comprises delivering compressed fresh air and EGR to the engine via first and second throttle valves coupled to an intake manifold of the engine. During a higher engine-load condition, an EGR exhaust flow is cooled in a heat exchanger and the cooled EGR exhaust flow is admitting to the intake manifold. During a lower engine-load condition, fresh air is warmed in the heat exchanger, and the warmed fresh air is admitted to the intake manifold.
摘要:
A method for measuring flow through an orifice using an upstream gauge pressure sensor and a downstream absolute pressure sensor determines atmospheric pressure when flow through the orifice is substantially zero, or less than a predetermined value. Then, this estimate, along with the upstream and downstream pressure sensors are used to measure flow through the orifice.
摘要:
An engine air/fuel control system responsive to an electrically heated exhaust gas oxygen sensor. Electrical power is supplied to the sensor by a feedback control system responsive to peak-to-peak measurement in the sensor output. Peak-to-peak measurements are averaged over a predetermined number of sample times and the resulting average value compared to a deadband. When the average measurement is above, within, or below the deadband, electrical power to the heater is, respectively, reduced, held constant, or decreased.
摘要:
A method of monitoring, while on board an automotive vehicle, one or more of catalyst performance, engine misfire, and combustion quality, the vehicle having an internal combustion engine equipped with a catalyst for converting noxious emissions of the engine, comprising: (i) exposing at least one pair of EGO sensors to substantially the same emissions either exiting from the engine or from the catalyst, one of the EGO sensors having its electrode highly catalytic, and the other sensor having its electrode low-to-noncatalytic; (ii) comparing the outputs of the sensor electrodes (amplitude, frequency, or phase shift) to determine if there is a sufficient differential to indicate a misfire or poor combustion in the case of the sensors being located downstream of the engine exhaust but upstream of the catalyst, or indicating poor catalyst efficiency in the case of the sensors being placed substantially immediately downstream of the catalyst. The catalyst may be a three-way catalyst (or an oxidation catalyst). The sensors may be of the EGO, HEGO, or UEGO types. Two pairs of sensors may be used, a first pair being placed substantially immediately upstream of the catalyst and the second pair being placed substantially immediately downstream of the catalyst, the pairs of EGO sensors being incorporated into a closed-loop feedback control of the engine fuel control system.
摘要:
A method is provided for controlling an engine via an outlet control device of an intake manifold, such as via variable valve lift operation. The engine may further include an inlet control device, such as an electronic throttle, as well as coordination between the inlet and outlet control devices for controlling airflow in the engine.
摘要:
A method is provided for controlling an engine via an outlet control device of an intake manifold, such as via variable valve lift operation. The engine may further include an inlet control device, such as an electronic throttle, as well as coordination between the inlet and outlet control devices for controlling airflow in the engine.