摘要:
The invention provides, in one aspect, a method of forming a semiconductor device including providing a semiconductor substrate that comprises a first portion having a crystal orientation and a second portion located over the first portion and having a different crystal orientation. An interfacial region is located between the first portion and second portion. A passivating dopant is implanted into the interfacial region to passivate unterminated bonds within the interfacial region.
摘要:
A method (10) of forming a transistor (100) includes treating (12) at least some of a semiconductor substrate (102) with carbon and then forming (18) a gate structure (114) over the semiconductor substrate. A channel region (122) is thereby being defined within the semiconductor substrate (102) below the gate structure (114). Source and drain regions (140, 142) are then formed (26) within the semiconductor substrate (102) on opposing sides of the channel (122) with a phosphorus dopant.
摘要:
The present invention provides, in one embodiment, a method of fabricating a semiconductor device (100). The method comprises growing an oxide layer (120) on a gate structure (114) and a substrate (102) and implanting a dopant (124) into the substrate (102) and the oxide layer (120). Implantation is such that a portion of the dopant (124) remains in the oxide layer (120) to form an implanted oxide layer (126). The method further includes depositing a protective oxide layer (132) on the implanted oxide layer (126) and forming etch-resistant off-set spacers (134). The etch-resistant off-set spacers (134) are formed adjacent sidewalls of the gate structure (114) and on the protective oxide layer (132). The etch resistant off-set spacers having an inner perimeter (135) adjacent the sidewalls and an opposing outer perimeter (136). The method also comprises removing portions of the protective oxide layer (132) lying outside the outer perimeter (136) of the etch-resistant off-set spacers (134). Other embodiments of the present invention include a transistor device (200) and method of manufacturing an integrated circuit (300).
摘要:
A method (10) of forming a transistor (100) includes treating (12) at least some of a semiconductor substrate (102) with carbon and then forming (18) a gate structure (114) over the semiconductor substrate. A channel region (122) is thereby being defined within the semiconductor substrate (102) below the gate structure (114). Source and drain regions (140, 142) are then formed (26) within the semiconductor substrate (102) on opposing sides of the channel (122) with a phosphorus dopant.
摘要:
A method (10) of forming a transistor (100) includes treating (12) at least some of a semiconductor substrate (102) with carbon and then forming (18) a gate structure (114) over the semiconductor substrate. A channel region (122) is thereby being defined within the semiconductor substrate (102) below the gate structure (114). Source and drain regions (140, 142) are then formed (26) within the semiconductor substrate (102) on opposing sides of the channel (122) with a phosphorus dopant.
摘要:
A low stress sacrificial cap layer 120 having a silicon oxide liner film 130, a low stress silicon film 140, and a silicon nitride film Alternatively, a low stress sacrificial cap layer 410 having a silicon oxide liner film 130 and a graded silicon nitride film 420. Also, methods 300, 500 for fabricating a transistor 20, 400 having a low stress sacrificial cap layer 120, 410.
摘要:
A method of forming a transistor comprising forming a gate structure over an n-type semiconductor body and forming recesses substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown in the recesses and a silicon cap layer is formed over the silicon germanium. Further introduction of impurities into the silicon germanium to increase the melting point thereof and implanting p-type source/drain regions in the semiconductor body is included in the method. The method concludes with performing a high temperature thermal treatment.
摘要:
A semiconductor device includes source/drain regions formed in a substrate and having a concentration of nitrogen of at least about 5E18 cm−3. A gate dielectric is located over the substrate and between the source/drain regions. Gate sidewall spacers are located over said source/drain regions. A nitrogen-doped electrode including polysilicon is located over the gate dielectric. The electrode has a concentration of nitrogen therein greater than the concentration of nitrogen in the source/drain regions.
摘要:
A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer.
摘要:
One aspect of the invention relates to a method of forming P-N junctions within a semiconductor substrate. The method involves providing a temporary impurity species, such as fluorine, within the semiconductor crystal matrix prior to solid source in-diffusion of the primary dopant, such as boron. The impurity atom is a faster diffusing species relative to silicon atoms. During in-diffusion, the temporary impurity species acts to reduce the depth to which the primary dopant diffuses and thereby facilitates the formation of very shallow junctions.