摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.
摘要:
Semiconductor-based devices, and methods for making the devices, involve a first device that includes a buried channel layer, a dielectric layer, and a compositionally graded spacer layer. The spacer layer includes a first material and a second material, and is located between the buried channel layer and the dielectric layer. A second device includes a buried channel layer, a relaxed surface layer, and a spacer layer located between the buried channel layer and the relaxed surface layer. The spacer layer has a composition that is different from a composition of the relaxed layer. The spacer layer and the relaxed surface layer each have bandgap offsets relative to the buried channel layer to reduce a parasitic channel conduction. A substrate for fabrication of devices, and methods for making the substrate, involves a substrate that includes a first layer, such as a silicon wafer, a substantially uniform second layer, and a graded-composition third layer.
摘要:
A semiconductor structure includes a strain-inducing substrate layer having a germanium concentration of at least 10 atomic %. The semiconductor structure also includes a compressively strained layer on the strain-inducing substrate layer. The compressively strained layer has a germanium concentration at least approximately 30 percentage points greater than the germanium concentration of the strain-inducing substrate layer, and has a thickness less than its critical thickness. The semiconductor structure also includes a tensilely strained layer on the compressively strained layer. The tensilely strained layer may be formed from silicon having a thickness less than its critical thickness. A method for fabricating a semiconductor structure includes providing a substrate, providing a compressively strained semiconductor on the substrate, depositing a tensilely strained semiconductor adjacent the substrate until a thickness of a first region of the tensilely strained semiconductor is greater than a thickness of a second region of the tensilely strained semiconductor, forming a n-channel device on the first region, and forming a p-channel device on the second region.