摘要:
Gallium oxide films for sensing gas comprise Ga2O3 and have a porosity of at least about 30%. Such films can be formed by coating a substrate with a solution comprising: a gallium salt and a porogen comprising an organic compound comprising a hydrophilic chain and a hydrophobic chain; and heating the substrate to a temperature in the range from about 400° C. to about 600° C. while exposing the substrate to an oxygen-containing source to convert the gallium salt to a gallium oxide.
摘要翻译:用于感测气体的氧化镓膜包括Ga 2 O 3 O 3并具有至少约30%的孔隙率。 可以通过用包含镓盐和致孔剂的溶液涂覆基底来形成这种膜,所述成盐剂包含包含亲水链和疏水链的有机化合物; 并将衬底加热至约400℃至约600℃的温度,同时将衬底暴露于含氧源以将镓盐转化为氧化镓。
摘要:
Gallium oxide films for sensing gas comprise Ga2O3 and have a porosity of at least about 30%. Such films can be formed by coating a substrate with a solution comprising: a gallium salt and a porogen comprising an organic compound comprising a hydrophilic chain and a hydrophobic chain; and heating the substrate to a temperature in the range from about 400° C. to about 600° C. while exposing the substrate to an oxygen-containing source to convert the gallium salt to a gallium oxide.
摘要翻译:用于感测气体的氧化镓膜包括Ga 2 O 3并且具有至少约30%的孔隙率。 可以通过用包含镓盐和致孔剂的溶液涂覆基底来形成这种膜,所述成盐剂包含包含亲水链和疏水链的有机化合物; 并将衬底加热至约400℃至约600℃的温度,同时将衬底暴露于含氧源以将镓盐转化为氧化镓。
摘要:
An optofluidic device is provided. The device includes a cladding region having a first refractive index, and a channel defined by the cladding region such that the cladding region forms an inner surface or an interface of the channel. The channel is configured to house one or more of a liquid, a solid, a gas, a colloidal, or a suspension sample, wherein the sample has a second refractive index, where the channel is configured to guide radiation, and where the first refractive index is lower than the second refractive index.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
An optofluidic device is provided. The device includes a cladding region having a first refractive index, and a channel defined by the cladding region such that the cladding region forms an inner surface or an interface of the channel. The channel is configured to house one or more of a liquid, a solid, a gas, a colloidal, or a suspension sample, wherein the sample has a second refractive index, where the channel is configured to guide radiation, and where the first refractive index is lower than the second refractive index.
摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.