摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component having a capacitive magneto-MEMS component, a compensator and an output component for sensing magnetic fields and for providing, in response thereto, an indication of the current present in a respective conductor to be measured. In one embodiment, first and second mechanical sense components are electrically conductive and operate to sense a change in a capacitance between the mechanical sense components in response to a mechanical indicator from a magnetic-to-mechanical converter.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
A micro-electromechanical system (MEMS) current sensor is described as including a first conductor, a magnetic field shaping component for shaping a magnetic field produced by a current in the first conductor, and a MEMS-based magnetic field sensing component including a magneto-MEMS component for sensing the shaped magnetic field and, in response thereto, providing an indication of the current in the first conductor. A method for sensing a current using MEMS is also described as including shaping a magnetic field produced with a current in a first conductor, sensing the shaped magnetic field with a MEMS-based magnetic field sensing component having a magneto-MEMS component magnetic field sensing circuit, and providing an indication of the current in the first conductor.
摘要:
A micro-electromechanical system (MEMS) based current & magnetic field sensor includes a MEMS-based magnetic field sensing component a structural component comprising a silicon substrate and a compliant layer comprising a material selected from the group consisting of silicon dioxide and silicon nitride, a magnetic-to-mechanical converter coupled to the structural component to provide a mechanical indication of the magnetic field, and a strain responsive component coupled to the structural component to sense the mechanical indication and to provide an indication of the current in the current carrying conductor in response thereto.
摘要:
According to some embodiments, a Microelectromechanical System (MEMS) sensor includes a sensing material on a spring element. The sensor may also include a detector adapted to determine a resonant frequency associated with the spring element, wherein the resonant frequency changes upon the exposure of the sensing material to an analyte.
摘要:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
摘要:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
摘要:
An integrated spectrometer instrument, including an optical source formed on a chip, the optical source configured to generate an incident optical beam upon a sample to be measured. Collection optics formed on the chip are configured to receive a scattered optical beam from the sample, and filtering optics formed on the chip are configured to remove elastically scattered light from the scattered optical beam at a wavelength corresponding to the optical source. A tunable filter formed on the chip is configured to pass selected wavelengths of the scattered optical beam, and a photo detector device formed on the chip is configured to generate an output signal corresponding to the intensity of photons passed through the tunable filter.