Abstract:
A system and method for efficiently transferring address mappings and data access permissions corresponding to the address mappings. A computing system includes at least one processor and memory for storing a page table. In response to receiving a memory access operation comprising a first address, the address translation unit is configured to identify a data access permission based on a permission index corresponding to the first address, and access data stored in a memory location of the memory identified by a second address in a manner defined by the retrieved data access permission. The address translation unit is configured to access a table to identify the data access permission, and is configured to determine the permission index and the second address based on the first address. A single permission index may correspond to different permissions for different entities within the system.
Abstract:
Methods and systems for managing power consumption in data processing systems are described. In one embodiment, a data processing system includes a general purpose processing unit, a graphics processing unit (GPU), at least one peripheral interface controller, at least one bus coupled to the general purpose processing unit, and a power controller coupled to at least the general purpose processing unit and the GPU. The power controller is configured to turn power off for the general purpose processing unit in response to a first state of an instruction queue of the general purpose processing unit and is configured to turn power off for the GPU in response to a second state of an instruction queue of the GPU. The first state and the second state represent an instruction queue having either no instructions or instructions for only future events or actions.
Abstract:
Systems, apparatuses, and methods for retaining architected state for relatively frequent switching between sleep and active operating states are described. A processor receives an indication to transition from an active state to a sleep state. The processor stores a copy of a first subset of the architected state information in on-die storage elements capable of retaining storage after power is turned off. The processor supports programmable input/output (PIO) access of particular stored information during the sleep state. When a wakeup event is detected, circuitry within the processor is powered up again. A boot sequence and recovery of architected state from off-chip memory are not performed. Rather than fetch from a memory location pointed to by a reset base address register, the processor instead fetches an instruction from a memory location pointed to by a restored program counter of the retained subset of the architected state information.
Abstract:
Data processing systems with interrupts and methods for operating such data processing systems and machine readable media for causing such methods and containing executable program instructions. In one embodiment, an exemplary data processing system includes a processing system, an interrupt controller coupled to the processing system and a timer circuit which is coupled to the interrupt controller. The interrupt controller is configured to provide a first interrupt signal and a second interrupt signal to the processing system. The processing system is configured to maintain a data structure (such as, e.g., a list) of time-related events for a plurality of processes, and the processing system is configured to calise the entry of a value, representing a period of time, into the timer circuit. The timer circuit is configured to cause an assertion of the first interrupt signal in response to an expiration of the time period.
Abstract:
A system and method for efficiently transferring address mappings and data access permissions corresponding to the address mappings. A computing system includes at least one processor and memory for storing a page table. In response to receiving a memory access operation comprising a first address, the address translation unit is configured to identify a data access permission based on a permission index corresponding to the first address, and access data stored in a memory location of the memory identified by a second address in a manner defined by the retrieved data access permission. The address translation unit is configured to access a table to identify the data access permission, and is configured to determine the permission index and the second address based on the first address. A single permission index may correspond to different permissions for different entities within the system.
Abstract:
Systems, apparatuses, and methods for retaining architected state for relatively frequent switching between sleep and active operating states are described. A processor receives an indication to transition from an active state to a sleep state. The processor stores a copy of a first subset of the architected state information in on-die storage elements capable of retaining storage after power is turned off. The processor supports programmable input/output (PIO) access of particular stored information during the sleep state. When a wakeup event is detected, circuitry within the processor is powered up again. A boot sequence and recovery of architected state from off-chip memory are not performed. Rather than fetch from a memory location pointed to by a reset base address register, the processor instead fetches an instruction from a memory location pointed to by a restored program counter of the retained subset of the architected state information.
Abstract:
Data processing systems with interrupts and methods for operating such data processing systems and machine readable media for causing such methods and containing executable program instructions. In one embodiment, an exemplary data processing system includes a processing system, an interrupt controller coupled to the processing system and a timer circuit which is coupled to the interrupt controller. The interrupt controller is configured to provide a first interrupt signal and a second interrupt signal to the processing system. The processing system is configured to maintain a data structure (such as, e.g., a list) of time-related events for a plurality of processes, and the processing system is configured to calise the entry of a value, representing a period of time, into the timer circuit. The timer circuit is configured to cause an assertion of the first interrupt signal in response to an expiration of the time period.
Abstract:
Methods and systems for managing power consumption in data processing systems are described. In one embodiment, a data processing system includes a general purpose processing unit, a graphics processing unit (GPU), at least one peripheral interface controller, at least one bus coupled to the general purpose processing unit, and a power controller coupled to at least the general purpose processing unit and the GPU. The power controller is configured to turn power off for the general purpose processing unit in response to a first state of an instruction queue of the general purpose processing unit and is configured to turn power off for the GPU in response to a second state of an instruction queue of the GPU. The first state and the second state represent an instruction queue having either no instructions or instructions for only future events or actions.