Abstract:
Systems, methods, and apparatus to transition a display device between operating modes using a single dedicated pin of a circuit connected to the display device. The dedicated pin can receive a packet signal corresponding to an operating mode for the display device, and the circuit can thereafter cause the display device to transition into the desired operating mode in response to receiving the packet signal. The operating mode can be a low power on mode where an interface connected to the circuit is deactivated and at least some circuitry of the display device is throttled or powered off. The display device can be driven in an all black state while in the low power on mode, thereby allowing the display device to more quickly transition out of the low power on mode compared to when the display device is completely off.
Abstract:
Systems, methods, and apparatus to transition a display device between operating modes using a single dedicated pin of a circuit connected to the display device. The dedicated pin can receive a packet signal corresponding to an operating mode for the display device, and the circuit can thereafter cause the display device to transition into the desired operating mode in response to receiving the packet signal. The operating mode can be a low power on mode where an interface connected to the circuit is deactivated and at least some circuitry of the display device is throttled or powered off. The display device can be driven in an all black state while in the low power on mode, thereby allowing the display device to more quickly transition out of the low power on mode compared to when the display device is completely off.
Abstract:
Techniques for power management of a portable device are described herein. According to one embodiment, a user agent of an operating system executed within a portable device is configured to monitor activities of programs running within the portable device and to predict user intent at a given point in time and possible subsequent user interaction with the portable device based on the activities of the program. Power management logic is configured to adjust power consumption of the portable device based on the predicted user intent and subsequent user interaction of the portable device, such that remaining power capacity of a battery of the portable device satisfies intended usage of the portable device.
Abstract:
Techniques for power management of a portable device are described herein. According to one embodiment, a user agent of an operating system executed within a portable device is configured to monitor daily battery usage of a battery of the portable device, to capturing, by the user agent, daily battery charging pattern of the battery of the portable device, and to inferring, by the user agent, user intent of utilizing the portable device at a given point in time based on a battery operating condition at the point in time in view of the daily battery usage and the daily battery charging pattern. Power management logic is configured to perform power management actions based on the user intent.
Abstract:
This application relates to systems, methods, and apparatus for transitioning a display device between operating modes using a single dedicated pin of a circuit connected to the display device. The dedicated pin can receive a packet signal corresponding to an operating mode for the display device, and the circuit can thereafter cause the display device to transition into the desired operating mode in response to receiving the packet signal. The operating mode can be a low power on mode where an interface connected to the circuit is deactivated and at least some circuitry of the display device is throttled or powered off. The display device can be driven in an all black state while in the low power on mode, thereby allowing the display device to more quickly transition out of the low power on mode compared to when the display device is completely off.
Abstract:
In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.