摘要:
Methods and structures for forming anodization layers that protect and cosmetically enhance metal surfaces are described. In some embodiments, methods involve forming an anodization layer on an underlying metal that permits an underlying metal surface to be viewable. In some embodiments, methods involve forming a first anodization layer and an adjacent second anodization layer on an angled surface, the interface between the two anodization layers being regular and uniform. Described are photomasking techniques and tools for providing sharply defined corners on anodized and texturized patterns on metal surfaces. Also described are techniques and tools for providing anodizing resistant components in the manufacture of electronic devices.
摘要:
Various components of an electronic device housing and methods for their assembly are disclosed. The housing can be formed by assembling and connecting two or more different sections together. The sections of the housing may be coupled together using one or more coupling members. The coupling members may be formed using a two-shot molding process in which the first shot forms a structural portion of the coupling members, and the second shot forms cosmetic portions of the coupling members.
摘要:
Methods and systems for manufacturing composite parts that include anodizable portions and non-anodizable portions such that an interface between the anodizable portions and non-anodizable portions are free of visible defects are described. The non-anodizable portions can be made of anodizable metals such as aluminum or aluminum alloy. The non-anodizable portions are made of material that do not generally form an anodic film, such as plastic, ceramic or glass materials. In particular, the methods described relate to manufacturing methods that are compatible with anodizing processes and avoid defects related to anodizing processes. In particular embodiments, the methods involve avoiding trapping of anodizing chemicals within a gap between an anodizable portion and a non-anodizable portion, which prevents the anodizing chemicals from disrupting the uptake of dye in a post-anodizing dyeing process.
摘要:
Laser-based techniques for cutting and drilling of transparent components are disclosed. These laser-based techniques rely on laser modification of transparent substrates followed by chemical etching and are suitable for use with a variety of transparent substrates. Transparent components and enclosures and electronic devices including the transparent components are also disclosed herein.
摘要:
Methods and systems for manufacturing composite parts that include anodizable portions and non-anodizable portions such that an interface between the anodizable portions and non-anodizable portions are free of visible defects are described. The non-anodizable portions can be made of anodizable metals such as aluminum or aluminum alloy. The non-anodizable portions are made of material that do not generally form an anodic film, such as plastic, ceramic or glass materials. In particular, the methods described relate to manufacturing methods that are compatible with anodizing processes and avoid defects related to anodizing processes. In particular embodiments, the methods involve avoiding trapping of anodizing chemicals within a gap between an anodizable portion and a non-anodizable portion, which prevents the anodizing chemicals from disrupting the uptake of dye in a post-anodizing dyeing process.
摘要:
Manufacturing methods related to anodizing of metal parts are described. In particular, pre-anodizing and post-anodizing methods for forming a consistent and defect-free interface between metal and non-metal sections of a part are described. Methods involve preventing residues from various manufacturing processes from entering a gap or space at the interface between the metal and non-metal section of the part and that can disrupt subsequent anodizing and anodic film dyeing processes. In particular embodiments, methods involve forming a barrier layer or filler layer between the metal and non-metal sections. Portions of the barrier layer or filler layer can be removed prior to anodizing. The resultant part has a well-defined and uniform space between the metal and non-metal sections that is free from visual defects.
摘要:
Techniques for making glass components for electronic devices are disclosed. The techniques disclosed can be used to shape a glass workpiece to form a three-dimensional glass component, such as a glass cover member. Glass components and enclosures and electronic devices including the glass components are also disclosed.
摘要:
Techniques for making glass components for electronic devices are disclosed. The techniques disclosed herein can be used to modify a glass workpiece to form a three-dimensional glass component, such as a glass cover member. The techniques may involve reshaping the glass workpiece, fusing glass layers of the workpiece, or combinations of these. Glass components and electronic devices including these components are also disclosed.
摘要:
Manufacturing methods that combine molding processes and shaping processes are described. The systems and methods described can be used to form composite parts using a single manufacturing process. In some embodiments, the methods involve positioning a workpiece within a mold cavity, then injecting a moldable material within the cavity at pressures sufficient to deform the workpiece such that features, such as protrusions or cavities, are formed within the workpiece. The resultant composite part includes the workpiece molded to a molded material. In some embodiments, the workpiece is a layer of metal material and the molded material is a structurally rigid plastic material, such that the composite part is a structurally rigid plastic with a metal coating. In some embodiments, multiple workpieces are molded within a composite part.
摘要:
A high gloss deep black housing for a handheld electronic device is disclosed having either a textured or a mirror finish. Methods for preparing a housing having the high gloss deep black finish are also disclosed, including housings for mobile phones.