Abstract:
Embodiments of the present invention provide processes to selectively form a metal layer on a conductive surface, followed by flowing a silicon based compound over the metal layer to form a metal silicide layer. In one embodiment, a substrate having a conductive surface and a dielectric surface is provided. A metal layer is then deposited on the conductive surface. A metal silicide layer is formed as a result of flowing a silicon based compound over the metal layer. A dielectric is formed over the metal silicide layer.
Abstract:
Embodiments of the present invention provide processes to selectively form a metal layer on a conductive surface, followed by flowing a silicon based compound over the metal layer to form a metal silicide layer. In one embodiment, a substrate having a conductive surface and a dielectric surface is provided. A metal layer is then deposited on the conductive surface. A metal silicide layer is formed as a result of flowing a silicon based compound over the metal layer. A dielectric is formed over the metal silicide layer.
Abstract:
Embodiments described herein generally relate to the formation of a UV compatible barrier stack. Methods described herein can include delivering a process gas to a substrate positioned in a process chamber. The process gas can be activated to form an activated process gas, the activated process gas forming a barrier layer on a surface of the substrate, the barrier layer comprising silicon, carbon and nitrogen. The activated process gas can then be purged from the process chamber. An activated nitrogen-containing gas can be delivered to the barrier layer, the activated nitrogen-containing gas having a N2:NH3 ratio of greater than about 1:1. The activated nitrogen-containing gas can then be purged from the process chamber. The above elements can be performed one or more times to deposit the barrier stack.
Abstract:
Embodiments of the present invention provide methods and apparatus for forming a patterned magnetic layer for use in magnetic media. According to embodiments of the present application, a silicon oxide layer formed by low temperature chemical vapor deposition is used to form a pattern in a hard mask layer, and the patterned hard mask is used to form a patterned magnetic layer by plasma ion implantation.