Fluorine doped plasma enhanced phospho-silicate glass, and process
    1.
    发明授权
    Fluorine doped plasma enhanced phospho-silicate glass, and process 失效
    氟掺杂等离子体增强磷硅玻璃及其工艺

    公开(公告)号:US5643640A

    公开(公告)日:1997-07-01

    申请号:US563165

    申请日:1995-11-27

    IPC分类号: C03C3/112 C23C16/40 B05D3/06

    CPC分类号: C03C3/112 C23C16/401

    摘要: A fluorinated phosphosilicate glass (FPSG) is produced in a plasma-enhanced chemical vapor deposition process (PECVD) in which the plasma source comprises conventional phosphosilicate glass-forming materials together with one or more fluorine gas-forming materials. The deposited fluorine-gas enhances the filling of gaps or voids with dielectric glass compositions by etching the top of the via holes or gaps during the filling operation. The present fluorine-doped phosphosilicate glass compositions are stable compared to conventional phosphosilicate glass compositions which are relatively unstable and unsatisfactory for use as gap-filling dielectric glass compositions.

    摘要翻译: 在等离子体增强化学气相沉积工艺(PECVD)中生产氟化磷硅酸盐玻璃(FPSG),其中等离子体源包含常规的磷硅酸盐玻璃形成材料以及一种或多种氟气形成材料。 沉积的氟气通过在填充操作期间蚀刻通孔或间隙的顶部来增强用电介质玻璃组合物填充间隙或空隙。 本发明的氟掺杂磷硅酸盐玻璃组合物与常规的磷硅酸盐玻璃组合物相比是稳定的,这些组合物相对不稳定并且不能令人满意地用作间隙填充电介质玻璃组合物。

    SILICON GERMANIUM FILM FORMATION METHOD AND STRUCTURE
    3.
    发明申请
    SILICON GERMANIUM FILM FORMATION METHOD AND STRUCTURE 审中-公开
    硅锗膜形成方法和结构

    公开(公告)号:US20130009211A1

    公开(公告)日:2013-01-10

    申请号:US13616994

    申请日:2012-09-14

    IPC分类号: H01L29/161 H01L27/092

    摘要: Epitaxial deposition of silicon germanium in a semiconductor device is achieved without using masks. Nucleation delays induced by interactions with dopants present before deposition of the silicon germanium are used to determine a period over which an exposed substrate surface may be subjected to epitaxial deposition to form a layer of SiGe on desired parts with substantially no deposition on other parts. Dopant concentration may be changed to achieve desired thicknesses within preferred deposition times. Resulting deposited SiGe is substantially devoid of growth edge effects.

    摘要翻译: 在不使用掩模的情况下实现硅锗在半导体器件中的外延沉积。 使用在沉积硅锗之前与存在的掺杂剂的相互作用引起的成核延迟来确定暴露的衬底表面可以经历外延沉积以在所需部分上形成SiGe层的周期,而在其它部分上基本上没有沉积。 可以改变掺杂剂浓度以在优选的沉积时间内实现期望的厚度。 导致沉积的SiGe基本上没有生长边缘效应。

    Pattern independent Si:C selective epitaxy
    5.
    发明授权
    Pattern independent Si:C selective epitaxy 失效
    图案独立Si:C选择性外延

    公开(公告)号:US07759213B2

    公开(公告)日:2010-07-20

    申请号:US12189344

    申请日:2008-08-11

    IPC分类号: H01L21/76

    摘要: Trenches are formed in a silicon substrate by etching exposed portions of the silicon substrate. After covering areas on which deposition of Si:C containing material is to be prevented, selective epitaxy is performed in a single wafer chamber at a temperature from about 550° C. to about 600° C. employing a limited carrier gas flow, i.e., at a flow rate less than 12 standard liters per minute to deposit Si:C containing regions at a pattern-independent uniform deposition rate. The inventive selective epitaxy process for Si:C deposition provides a relatively high net deposition rate a high quality Si:C crystal in which the carbon atoms are incorporated into substitutional sites as verified by X-ray diffraction.

    摘要翻译: 通过蚀刻硅衬底的暴露部分在硅衬底中形成沟槽。 在覆盖要防止沉积含Si:C的材料的区域之后,使用有限的载气流在约550℃至约600℃的温度下,在单晶片室中进行选择性外延,即, 以小于12标准升/分钟的流速,以不依赖于图案的均匀沉积速率沉积含Si:C的区域。 用于Si:C沉积的本发明的选择性外延工艺提供了相对较高的净沉积速率,其中通过X射线衍射验证碳原子并入到取代位置的高质量Si:C晶体。

    ELIMINATE NOTCHING IN SI POST SI-RECESS RIE TO IMPROVE EMBEDDED DOPED AND INSTRINSIC SI EPITAZIAL PROCESS
    6.
    发明申请
    ELIMINATE NOTCHING IN SI POST SI-RECESS RIE TO IMPROVE EMBEDDED DOPED AND INSTRINSIC SI EPITAZIAL PROCESS 审中-公开
    消除注意事项,以改善嵌入式印刷和印刷工艺

    公开(公告)号:US20090001430A1

    公开(公告)日:2009-01-01

    申请号:US11771013

    申请日:2007-06-29

    IPC分类号: H01L29/78 H01L21/336

    摘要: A dielectric element, and method of manufacturing the same, is disclosed for a semiconductor structure which comprises a substrate having a gate formed on a top surface of the substrate. The substrate and gate define a gap in a region between the gate and the substrate. A specified amount of dielectric on the substrate, at least a portion of which is in the gap, forms the dielectric element which substantially prevents unwanted electrical connectivity between the gate and the substrate.

    摘要翻译: 公开了一种用于半导体结构的电介质元件及其制造方法,该半导体结构包括在衬底的顶表面上形成有栅极的衬底。 衬底和栅极限定栅极和衬底之间的区域中的间隙。 衬底上的至少一部分位于间隙中的指定量的电介质形成基本上防止栅极和衬底之间不必要的电连接的电介质元件。

    METHOD FOR FABRICATING SEMICONDUCTOR STRUCTURES
    10.
    发明申请
    METHOD FOR FABRICATING SEMICONDUCTOR STRUCTURES 有权
    制造半导体结构的方法

    公开(公告)号:US20100112762A1

    公开(公告)日:2010-05-06

    申请号:US12684551

    申请日:2010-01-08

    IPC分类号: H01L21/336 H01L21/20

    摘要: Methods of fabricating a semiconductor structure with a non- epitaxial thin film disposed on a surface of a substrate of the semiconductor structure are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process. Such resultant/intermediate structures may be used, for example, but are not limited to: source-drain fabrication; hardmask strengthening; spacer widening; high-aspect-ratio (HAR) vias filling; micro-electro-mechanical-systems (MEMS) fabrication; FEOL resistor fabrication; lining of shallow trench isolations (STI) and deep trenches; critical dimension (CD) tailoring and claddings.

    摘要翻译: 公开了制造具有设置在半导体结构的衬底的表面上的非外延薄膜的半导体结构的方法。 该方法提供非晶和/或多晶材料的选择性非外延生长(SNEG)或沉积以在其表面上形成薄膜。 表面可以是非结晶介电材料或结晶材料。 非结晶电介质上的SNEG还通过仔细选择前体载体 - 蚀刻剂比例,进一步提供非晶/多晶材料对氧化物上的氮化物的选择性生长。 非外延薄膜形成可并入到任何前端(FEOL)制造工艺中的所得和/或中间半导体结构。 这样的合成/中间结构可以用于例如但不限于:源极 - 漏极制造; 硬掩模强化; 间隔加宽; 高纵横比(HAR)通孔填充; 微电子机械系统(MEMS)制造; FEOL电阻制造; 浅沟槽隔离(STI)和深沟槽衬砌; 临界尺寸(CD)裁剪和包层。