摘要:
A ceramic casting shell mold having a pre-selected shape is described. It includes alternate, repeating layers of a ceramic coating material and a ceramic stucco, defining a total thickness of the shell mold; and a ceramic-based mat of reinforcing material disposed in the alternate, repeating layers of coating material and stucco. The reinforcing material for the mat is usually made from a ceramic material, and includes fibers having a bi-directional orientation. A method for making a ceramic casting shell mold is also described, as well as articles cast from such a mold, e.g., superalloy articles.
摘要:
A ceramic casting shell mold having a pre-selected shape is described. The shell mold comprises repeating layers of a ceramic material which define its wall thickness and shape. At least one of the layers of ceramic material contains refractory whiskers which provide structural reinforcement to the shell mold. The whiskers are usually incorporated into a layer of the ceramic material which is disposed at a position off-center of the wall-thickness of the mold. A method for making a ceramic casting shell mold is also described, as are metal- or metal alloy components cast in these shell molds.
摘要:
A method for fabricating a fired ceramic article, a green product, and a fired ceramic article, all for use as a core in the investment casting of directionally solidified eutectic and superalloy material. A ceramic slurry is prepared of alumina, aluminum and a solution of a polymerizable binder in a liquid. The slurry is extruded under low pressure into a closed cavity to form a gelled green product which is subsequently heated in an oxygen-containing atmosphere, wherein the oxygen reacts with the aluminum in the green product to form alumina which advantageously causes an increase in volume of the green product which counters the shrinkage effects of heating. The polymerizable binder is of a type which cross-links with the alumina and upon heating the liquid component of such binder vaporizes and the remaining polymer component subsequently gasifies on further heating to leave desired interstitial pores within the green product, which assist in allowing the oxygen to permeate the green product, which assists in oxidation of the aluminum through the green product. The green product is thereafter sintered to form a substantially dimensionally precise ceramic article suitable for precision-casting of superalloy materials.
摘要:
A method for fabricating a fired ceramic article, a green product, and a fired ceramic article, all for use as a core in the investment casting of directionally solidified eutectic and superalloy material. A ceramic slurry is prepared of alumina, aluminum and a solution of a polymerizable binder in a liquid. The slurry is extruded under low pressure into a closed cavity to form a gelled green product which is subsequently heated in an oxygen-containing atmosphere, wherein the oxygen reacts with the aluminum in the green product to form alumina which advantageously causes an increase in volume of the green product which counters the shrinkage effects of heating. The polymerizable binder is of a type which cross-links with the alumina and upon heating the liquid component of such binder vaporizes and the remaining polymer component subsequently gasifies on further heating to leave desired interstitial pores within the green product, which assist in allowing the oxygen to permeate the green product, which assists in oxidation of the aluminum through the green product. The green product is thereafter sintered to form a substantially dimensionally precise ceramic article suitable for precision-casting of superalloy materials.
摘要:
A heater that may include an outer housing and an inner tube is provided. The inner tube is in a coaxial relation to and within the outer housing. An inward facing surface of the inner tube defines a volume sufficient to receive a reaction capsule, and the outward facing surface is radially spaced from an inward facing surface of the outer housing sufficient to define a gap. A filler material is disposed within the gap. The filler material responds to pressure such that the filler volume is reduced by less than 5 volume percent at greater than 500 MPa pressure and at greater than 500° C. temperature. One or more heating elements are disposed in the gap. The heating elements are in thermal communication with the inner tube.
摘要:
An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
摘要:
A high temperature stable composition includes a first material and a second material interspersed within the first material so as to form a structure. The composition is structured such that the first and second materials maintain a periodicity of distribution between about 100 nm and about 1000 nm, and the composition is operable to reflect photons having a wavelength greater than about 700 nm and to emit or transmit photons having a wavelength between about 400 nm and about 700 nm at temperatures greater than about 2000 Kelvin for at least about 10 hours.
摘要:
A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550 ° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
摘要:
A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
摘要:
A heater that may include an outer housing and an inner tube is provided. The inner tube is in a coaxial relation to and within the outer housing. An inward facing surface of the inner tube defines a volume sufficient to receive a reaction capsule, and the outward facing surface is radially spaced from an inward facing surface of the outer housing sufficient to define a gap. A filler material is disposed within the gap. The filler material responds to pressure such that the filler volume is reduced by less than 5 volume percent at greater than 500 MPa pressure and at greater than 500° C. temperature. One or more heating elements are disposed in the gap. The heating elements are in thermal communication with the inner tube.