Abstract:
Methods and systems for correcting leakage and/or distortion in radar systems include defining an integration time period, dividing the integration time period into a first sub-period and a second sub-period, at least partially transmitting a transmission radar signal during the first sub-period of the integration time period, not transmitting at all during the second sub-period of the integration time period, integrating the detected signal during both the first sub-period and the second sub-period, and subtracting a last sampled integrated value of the second sub-period from a last sampled integrated value of the first sub-period to generate a corrected integrated value for the integration time period.
Abstract:
In a frequency-modulated continuous-wave radar processing system and method, a linear frequency ramp signal is defined. The linear ramp signal is divided into a plurality of time sections. The sections of the linear ramp signal are rearranged in time such that the plurality of sections define a transmit control signal different than the linear ramp signal. A radar transmission signal is generated having a frequency varying with time according to the transmit control signal, and the radar transmission signal is transmitted into the region of interest. An intermediate frequency (IF) signal is generated using the radar transmission signal and radar receive signals received from the region of interest, a frequency of the IF signal being a difference between the frequency of the radar transmission signal and a frequency of the radar receive signals. The IF signal is low-pass filtered. Radar processing is performed on the low-pass-filtered IF signal.
Abstract:
Methods and systems for correcting leakage and/or distortion in radar systems include defining an integration time period, dividing the integration time period into a first sub-period and a second sub-period, at least partially transmitting a transmission radar signal during the first sub-period of the integration time period, not transmitting at all during the second sub-period of the integration time period, integrating the detected signal during both the first sub-period and the second sub-period, and subtracting a last sampled integrated value of the second sub-period from a last sampled integrated value of the first sub-period to generate a corrected integrated value for the integration time period.
Abstract:
An electrical gasket provides an electrical seal between first and second components in an electrical module. The electrical gasket includes an attachment portion for fixedly attaching the electrical gasket to one of the first and second components and a plurality of spring members for engaging the other of the first and second components to make mechanical and electrical contact between the first and second components such that the electrical seal is provided between the first and second electrical components. One of the components of the module can be an EMI shield or printed circuit board of the module, and another of the components can be the module housing.
Abstract:
In a frequency-modulated continuous-wave radar processing system and method, a linear frequency ramp signal is defined. The linear ramp signal is divided into a plurality of time sections. The sections of the linear ramp signal are rearranged in time such that the plurality of sections define a transmit control signal different than the linear ramp signal. A radar transmission signal is generated having a frequency varying with time according to the transmit control signal, and the radar transmission signal is transmitted into the region of interest. An intermediate frequency (IF) signal is generated using the radar transmission signal and radar receive signals received from the region of interest, a frequency of the IF signal being a difference between the frequency of the radar transmission signal and a frequency of the radar receive signals. The IF signal is low-pass filtered. Radar processing is performed on the low-pass-filtered IF signal.
Abstract:
A housing for a radar sensor module has a back surface and a plurality of side surfaces connected to the back surface. A vent structure is connected to the back surface and at least one of the side surfaces. The vent structure includes an enclosure enclosing a chamber. A first opening in the vent structure penetrates the at least one of the side surfaces of the housing, such that the chamber is exposed to an exterior of the housing. A second opening in the vent structure penetrates the enclosure such that the chamber is exposed to an interior of the housing.
Abstract:
An electronic module and method of making an electronic module include a printed circuit board (PCB) having a surface, at least one conductive trace being formed on the surface. A housing element for mechanically mating with the PCB includes at least one mating surface aligned with the conductive trace on the PCB when the PCB and the housing element are mechanically mated, the mating surface comprising a plurality of alternating protrusions and spaces between the protrusions. An electrical gasket is formed on the mating surface of the housing element such that the electrical gasket conforms with the protrusions and spaces on the mating surface of the housing element and is disposed between the mating surface of the housing element and the conductive trace on the surface of the PCB when the housing element and the PCB are mechanically mated, such that the electrical gasket provides an electromagnetic interference (EMI) seal between the mating surface of the housing element and the conductive trace on the first surface of the PCB.
Abstract:
An electronic module and method of making an electronic module include a printed circuit board (PCB) having a surface, at least one conductive trace being formed on the surface. A housing element for mechanically mating with the PCB includes at least one mating surface aligned with the conductive trace on the PCB when the PCB and the housing element are mechanically mated, the mating surface comprising a plurality of alternating protrusions and spaces between the protrusions. An electrical gasket is formed on the mating surface of the housing element such that the electrical gasket conforms with the protrusions and spaces on the mating surface of the housing element and is disposed between the mating surface of the housing element and the conductive trace on the surface of the PCB when the housing element and the PCB are mechanically mated, such that the electrical gasket provides an electromagnetic interference (EMI) seal between the mating surface of the housing element and the conductive trace on the first surface of the PCB.
Abstract:
Methods and systems for cancelling continuous wave interference in radar systems include defining an integration time period, dividing the integration time period into sub-periods during which the radar sensor system transmits a radar signal integrating a detected signal during both sub-periods to generate sub-period integrated values, wherein integration in the sub-periods is triggered at points of symmetrical opposite polarities of a down converted interferer signal having a non-integer number of cycles in each sub-period, and adding tire respective sub-period integrated values to cancel interference residue of opposite polarity in the respective sub-periods.
Abstract:
A housing for a radar sensor module has a back surface and a plurality of side surfaces connected to the back surface. A vent structure is connected to the back surface and at least one of the side surfaces. The vent structure includes an enclosure enclosing a chamber. A first opening in the vent structure penetrates the at least one of the side surfaces of the housing, such that the chamber is exposed to an exterior of the housing. A second opening in the vent structure penetrates the enclosure such that the chamber is exposed to an interior of the housing.