Abstract:
Provided are an array substrate and a manufacturing method therefor, a display panel, and a display device. The array substrate includes: a plurality of electrodes arranged in an array. The electrode includes a plurality of strip electrodes that are connected to each other and spaced. The plurality of strip electrodes at least have two thicknesses. A distance between two adjacent strip electrodes is less than a preset value. During manufacturing, a mask used for forming each layer of sub-electrodes includes a plurality of strip-shaped shading regions that are connected to each other and spaced in a first direction. Strip-shaped shading regions in a mask used for sub-electrodes formed subsequently are integrally shifted by a first distance in the first direction relative to strip-shaped shading regions in a mask used for sub-electrodes formed last time.
Abstract:
A display panel includes a first substrate and a second substrate which are arranged opposed to each other. The space between the first substrate and the second substrate is separated into a plurality of sub-pixel regions. Within each sub pixel region, a first electrode, a first fluid layer, a second fluid layer, a hydrophobic dielectric layer and a second electrode are arranged in this order. The first fluid layer is made of hydrophilic liquid. The second fluid layer is made of ink. When no electric field is applied between the first electrode and the second electrode, the ink spreads over the surface of the hydrophobic dielectric layer. When an electric field is applied between the first electrode and the second electrode, the ink aggregates to expose the hydrophobic dielectric layer.
Abstract:
The disclosure discloses a liquid crystal display panel, a method for fabricating the same and a display device, where the liquid crystal display panel includes an array substrate and an opposite substrate arranged opposed to the array substrate, wherein a transparent flexible conductive film is arranged on a side of the opposite substrate facing away from the array substrate.
Abstract:
A thin film transistor, an array substrate and a display device are provided by the present disclosure. The thin film transistor is on a base substrate, a profile of a width edge of the channel includes an up-and-down curved section in a direction perpendicular to a surface of the base substrate.
Abstract:
An array substrate and manufacturing method thereof, an X-ray flat panel detector and an image pickup system are provided. The array substrate is divided into a plurality of detection units, and each of the detection units has a first electrode (20) and a photoelectric conversion structure (30) provided therein. The first electrode (20) is disposed on a side of the photoelectric conversion structure (30) opposite to a light incident side, and is electrically connected to the photoelectric conversion structure (30). A reflective layer (40) that is electrically conductive is further included between the first electrode (20) and the photoelectric conversion structure (30), and a surface of the reflective layer (40) facing the photoelectric conversion structure (30) is a reflection surface. The utilization rate of light can be enhanced by the array substrate as stated in embodiments of the invention, so that the detection accuracy of the X-ray flat panel detector is enhanced.
Abstract:
A display device, a manufacturing method thereof, a driving method thereof and a display apparatus. The display device includes: a display panel; and an electrochromic device located on a light exiting side of the display panel. The electrochromic device and the display panel share a first base substrate and a first transparent electrode in the display panel that are close to the light exiting side of the display panel.
Abstract:
Disclosed in the present application are a thin film transistor, a manufacturing method therefor, a display panel, and a display device. The thin film transistor includes a base substrate, and a metal conductive material, a first silicon-based intermediate layer and a first gate insulating layer sequentially located on the base substrate, where the first silicon-based intermediate layer is bonded to the metal conductive material and the first gate insulating layer by means of chemical bonds.
Abstract:
An array substrate, a light control panel and a display device are disclosed. The array substrate includes first and second signal lines. The first signal line includes bending-line structures including first to third wire portions; a center lines of the first wire portion intersects with a center line of the second wire portion to form a first angle; the second wire portion includes first and second sides; sides of the first and third wire portions closer to the second signal line respectively intersect with the first side at first, and second positions; sides of an orthographic projection of the second signal line on an electrode layer where the first signal line is located are intersected with the first side at third and fourth positions; a length of a line segment between first and second position is greater than a length of a line segment between third and fourth position.
Abstract:
The present disclosure provides an organic transistor and a manufacturing method thereof, an array substrate, and a display device. The method for manufacturing the organic transistor includes: applying a photoresist on a side of an organic insulating layer; patterning the photoresist to form a confinement well; adding a solution of an organic semiconductor material and an orthogonal solvent to the confinement well; volatilizing the orthogonal solvent by an annealing process to induce directional growth of single crystal of the organic semiconductor material in the confinement well, thereby obtaining an organic single crystal layer; and removing remaining photoresist and using the organic single crystal layer as an active layer. The embodiment of the present disclosure produces an organic single crystal in a flexible display device at a low temperature, and the organic single crystal can be used as an active layer, resulting in an organic transistor having high mobility and stability.
Abstract:
According to an embodiment of the present disclosure, a method for manufacturing the array substrate includes forming a first transparent conductive layer and a metallic layer successively on a base substrate, and forming a gate electrode, a source electrode, a drain electrode and a first transparent electrode by one patterning process.