Abstract:
A substrate, a display device and a method for manufacturing the substrate are provided. The substrate includes a base substrate and a wire grid array formed on the base substrate, wherein the wire grid array comprises a plurality of metal patterns arranged in sequence, and a width of a side of each of the metal patterns away from the base substrate is smaller than a width of a side of the metal pattern close to the base substrate.
Abstract:
A method for manufacturing an array substrate, an array substrate and a display panel are provided. The method includes forming patterns of a gate metal layer and a gate insulating layer successively on a base plate, forming a pattern of a semiconductor layer, where the pattern of the semiconductor layer comprises a pattern of an active region and a pattern of a pixel electrode region, the semiconductor layer comprises an insulative oxide layer and a semiconductive oxide layer stacked on the insulative oxide layer, and the insulative oxide layer is located between the gate insulating layer and the semiconductive oxide layer, forming a pattern of a source and drain metal layer, and subjecting the semiconductive oxide layer in the pixel electrode region to plasma treatment, to convert the semiconductive oxide layer in the pixel electrode region into a conductor.
Abstract:
A light emitting device, a fabricating method thereof, and a display device are disclosed. In the light emitting device, a light emitting functional layer includes at least two QD light emitting layers which emit light of different colors, and a transparent insulating layer which is arranged between any two neighboring QD light emitting layers. The light emitting device has a reduced power consumption, and the problem of shift in color of the emitted light due to high-energy excitons transfer is overcome.
Abstract:
The present disclosure provides a display panel separation pillar and a method for manufacturing the same, a display panel and a display device. The display panel separation pillar includes a first material pattern and a second material pattern on the first material pattern. The first material pattern includes an upper surface and a lower surface opposite to each other, and a first separation lateral side and a second separation lateral side which are opposite to each other and between the upper surface and the lower surface. The second material pattern includes an upper surface and a lower surface opposite to each other. The upper surface of the first material pattern directly contacts with the lower surface of the second material pattern. Projections of the first separation lateral side and the second separation lateral side of the first material pattern onto a plane of the lower surface of the second material pattern are between edges of the lower surface of the second material pattern.
Abstract:
An array substrate and a manufacturing method thereof, a display panel and a display device are provided. The array substrate includes: a base substrate; a gate line and a data line disposed on the base substrate, wherein the gate line and the data line are intersected to define a pixel region; and a pixel electrode and a common electrode that are in the pixel region, wherein both the pixel electrode and the common electrode are perpendicular to the base substrate and protruded from the base substrate, and the pixel electrode and the common electrode are opposite to each other; and after a voltage is applied to the pixel electrode and the common electrode, an electric field parallel to the base substrate is generated between a surface of the pixel electrode facing the common electrode and a surface of the common electrode facing the pixel electrode.
Abstract:
The disclosure provides a transfer device and a transfer method using the same. The transfer device comprises a first conveyance roller, a transfer roller and a second conveyance roller. The transfer roller includes a roller body and stamp contacts formed on and protruded from the roller body. The stamp contacts can absorb elements, axes of the first conveyance roller. The transfer roller and the second conveyance roller are arranged in parallel with each other. The transfer roller is interposed between the first and second conveyance rollers. A first roll gap is formed between the first conveyance roller and the transfer roller to convey a medium substrate, and a second roll gap is formed between the second conveyance roller and the transfer roller to convey a target substrate. The transfer device and method can be used to transfer a great amount of elements to the substrate having large size.
Abstract:
A thin film transistor, an array substrate and a display device are provided by the present disclosure. The thin film transistor is on a base substrate, a profile of a width edge of the channel includes an up-and-down curved section in a direction perpendicular to a surface of the base substrate.
Abstract:
A display device, a manufacturing method thereof, a driving method thereof and a display apparatus. The display device includes: a display panel; and an electrochromic device located on a light exiting side of the display panel. The electrochromic device and the display panel share a first base substrate and a first transparent electrode in the display panel that are close to the light exiting side of the display panel.
Abstract:
The present invention discloses a touch screen substrate and a method of manufacturing the same. The touch screen substrate includes a capacitance layer comprising a plurality of electrodes, a first cover layer formed on the capacitance layer; a plurality of conductive bridges located on the first cover layer and configured to be electrically connected to a part of the electrodes that are electrically isolated; and a plurality of electrical connection lines, configured to respectively be electrically connected to the respective conductive bridge so as to electrically connect the first electrode with a touch detecting circuit. A material layer for forming the electrical connection lines is different from a material layer for forming the conductive bridges such that the conductive bridges located below the electrical connection lines are not corroded when the material layer for the electrical connection lines is etched. Utilization of different chemical properties of copper and silver nanowires and ITO material and inclusion of a single patterning process increase productivity and yield.
Abstract:
A light valve structure, a manufacturing method therefor, an operating method therefor, an array substrate and an electronic device are provided. The light valve structure includes a base substrate, a light-transmissive part and a light-shielding part. The light-transmissive part is disposed on the base substrate and light-transmissive, and it at least includes a first electrode. The light-shielding part is disposed on the light-transmissive part; a first end of the light-shielding part is fixed relative to the light-transmissive part; and the light-shielding part includes a base layer and a second electrode layered on the base layer. The light-shielding part is configured to be curled so as to be away from the light-transmissive part, and/or the light-shielding part is configured to be spread due to the mutual adsorption between the first electrode and the second electrode, so as to be superimposed on the light-transmissive part.