Abstract:
A polysilicon thin film transistor, a manufacturing method thereof, an array substrate involve display technology field, and can repair the boundary defect and the defect state in polysilicon, suppress the hot carrier effect and make the characteristics of TFTs more stable. The polysilicon thin film transistor includes a gate electrode, a source electrode, a drain electrode and an active layer, the active layer comprises at least a channel area, first doped regions, second doped regions and heavily doped regions, and the first doped regions are disposed on two sides of the channel area, the second doped regions are disposed on sides of the first doped regions away from the channel area; the heavily doped regions are disposed on sides of the second doped regions opposed to the first doped regions; and dosage of ions in the heavily doped regions lies between that in the first doped regions and that in the second doped regions.
Abstract:
The present disclosure provides a thin film transistor, a method for manufacturing the same, an array substrate and a display device. The method for manufacturing a thin film transistor includes providing a substrate, forming a gate electrode, a gate insulating layer, an amorphous silicon material active layer and a cap layer on the substrate successively, wherein The cap layer is provided with a pattern on a side of the cap layer away from the amorphous silicon material active layer, and the pattern is composed of at least one groove along a length direction of the active layer and at least one groove along a width direction of the active layer, subjecting the amorphous silicon material active layer to laser annealing treatment to transform the amorphous silicon material active layer into a low temperature polycrystalline silicon material active layer, and removing the cap layer.
Abstract:
A display panel includes: a base substrate; a peripheral circuit located on the base substrate, the peripheral circuit including a first circuit, a second circuit and a third circuit, and the first circuit, the second circuit and the third circuit respectively including a first electrode pattern, a second electrode pattern and a third electrode pattern; and a protection structure, located in at least one circuit of the first circuit, the second circuit and the third circuit and configured for preventing an electrode pattern from being disconnected.
Abstract:
A thin-film transistor (TFT), a manufacturing method thereof, display substrate and a display device are disclosed. The TFT includes: an active layer, gate insulating layer, gate electrode, an interlayer dielectric layer, source electrode and a drain electrode disposed on a base substrate in sequence. The source electrode and drain electrode are respectively connected with the active layer via a through hole exposing the active layer; the gate insulating layer at least includes a silicon oxide layer and a silicon nitride layer in a two-layer structure; the interlayer dielectric layer at least includes silicon oxide layers and silicon nitride layers in a four-layer structure; the silicon oxide layers and silicon nitride layers of the gate insulating layer and the interlayer dielectric layer are alternately arranged; and the dimension of one side of the through hole away from the base substrate is greater than that of one side close to the base substrate.
Abstract:
The present invention provides a method for manufacturing an array substrate, an array substrate, and a display device. The method for manufacturing an array substrate, including a step of forming a thin film transistor and a storage capacitor on a substrate, the thin film transistor including a gate, a source, and a drain, and the storage capacitor including a first pole plate and a second pole plate, wherein, arranging the source, the drain, and the first pole plate in a single layer through implanting dopant ions into an amorphous silicon layer formed on the substrate by one ion-implantation process, and through crystallizing an amorphous silicon material forming the amorphous silicon layer and activating the dopant ions by a laser irradiation process. Accordingly, process steps are simplified and a process cost is reduced greatly, and the performances of the array substrate and the display device are increased.
Abstract:
A display panel comprises a display area and a peripheral area around the display area. The peripheral area comprises: an electroluminescent layer test region, a TFT test region and a plurality of lead-out lines. The electroluminescent layer test region comprises a plurality of thin film transistors having electroluminescent layers, a first test line connecting sources of the plurality of thin film transistors having electroluminescent layers, and a switch lead and a second test line connecting gates of the plurality of thin film transistors having electroluminescent layers. The TFT test region comprises a plurality of thin film transistors. Each of the plurality of lead-out lines is used for connecting a source-drain metal layer of one thin film transistor in the electroluminescent layer test region and a source-drain metal layer of one thin film transistor in the TFT test region.
Abstract:
The present invention provides a thin film transistor and a method of fabricating the same, an array substrate and a method of fabricating the same, and a display device. The thin film transistor comprises a gate, a source, a drain, a gate insulation layer, an active layer, a passivation layer, a first electrode connection line and a second electrode connection line. The gate, the source and the drain are provided in the same layer and comprise the same material. The gate insulation layer is provided above the gate, the active layer is provided above the gate insulation layer, and a pattern of the gate insulation layer, a pattern of the gate and a pattern of the active layer coincide with each other. The passivation layer covers the source, the drain and the active layer, and the passivation layer has a first via hole corresponding to a position of the source, a second via hole corresponding to a position of the drain, and a third via hole and a fourth via hole corresponding to a position of the active layer provided therein. The first electrode connection line connects the source with the active layer through the first via hole and the third via hole, and the second electrode connection line connects the drain with the active layer through the second via hole and the fourth via hole.
Abstract:
An array substrate and manufacturing method thereof, a display device, a thin film transistor and manufacturing method thereof are provided. The manufacturing method of an array substrate includes forming an active material layer (501), a gate insulating layer (204) and a metal thin film (502) on a base substrate (201), and forming a pattern including an active layer (203) and a pattern including a gate electrode (205), a source electrode (206), a drain electrode (207), a gate line (1063) and a data line (1061) by a first patterning process; forming a passivation layer (301) on the base substrate (201), and forming a source contact hole (302), a drain contact hole (303), and an bridge-structure contact hole (1062a) by a second patterning process; forming a transparent conductive thin film (1401) on the base substrate (201), and removing the transparent conductive thin film (1404) partially, so that a source contact section (401), a drain contact section (402), a pixel electrode (403), and an bridge structure (1062) are formed. With the manufacturing method, the use number of patterning processes is decreased.