Abstract:
The present disclosure is directed to a system and method for adjusting a conversion speed of an asynchronous SAR ADC based on a margin of time between when a conversion of a sample of an analog signal completes and a next sample of the analog signal is taken, referred to as a “conversion time margin.” The system and method reduce the conversion speed of an asynchronous SAR ADC when the conversion time margin permits to reduce the amount of power consumed and/or noise produced by the asynchronous SAR ADC.
Abstract:
Embodiments provide transmitter topologies that improve the power efficiency and bandwidth of RF transmitters for high transmission power applications. In an embodiment, the common-emitter/source PA of conventional topologies is replaced with a current-input common-base/gate PA, which is stacked on top on an open-collector/drain current-output transmitter. The common-base/gate PA protects the output of the transmitter from large output voltage swings. The low input impedance of the common-base/gate PA makes the PA less susceptible to frequency roll-off, even in the presence of large parasitic capacitance produced by the transmitter. At the same time, the low input impedance of the common-base/gate PA reduces the voltage swing at the transmitter output and prevents the transmitter output from being compressed or modulated. In an embodiment, the DC output current of the transmitter is reused to bias the PA, which results in power savings compared to conventional transmitter topologies.
Abstract:
Highly power efficient transmitter output stage designs are provided. In an embodiment, the probability density function (PDF) of an input signal is divided into a plurality of regions, and samples of the input signal are processed depending on the region of the PDF within which they fall. The PDF can be divided between an inner region corresponding to samples of the input signal that are within a predetermined amplitude range, and outer regions corresponding to samples of the input signal that are outside of the predetermined amplitude range. Samples of the input signal that fall in the inner region are processed by a class A biased amplifier and samples of the input signal that fall in the outer regions are processed by a class B biased amplifier. Output stage designs according to embodiments can be implemented as power amplifiers or power digital-to-analog converters (DACs).
Abstract:
Systems and methods for switching impedance are provided. In some aspects, a system includes first and second impedance elements and an impedance switch module, which includes a third impedance element coupled between the first and second impedance elements and a switch parallel to the third impedance element. The switch is coupled between the first and second impedance elements, and is configured to switch between an open configuration and a closed configuration. An electrical path is completed between the first impedance element and the second impedance element via the first switch in the closed configuration. The electrical path is not completed in the open configuration. A total impedance of the first impedance element, the second impedance element, and the impedance switch module is varied based on the switching between the open configuration and the closed configuration.
Abstract:
A system includes a first storage element to store an input signal for a first sampling lane for a SHA-less stage. A first switch is connected with the first storage element, the first switch to control when the first storage element stores the input signal for sampling on the first sampling lane. A second switch is connected in series with the first switch, the second switch to control an instance for sampling the input signal stored on the first storage element for the first sampling lane.
Abstract:
Embodiments provide transmitter topologies that improve the power efficiency and bandwidth of RF transmitters for high transmission power applications. In an embodiment, the common-emitter/source PA of conventional topologies is replaced with a current-input common-base/gate PA, which is stacked on top on an open-collector/drain current-output transmitter. The common-base/gate PA protects the output of the transmitter from large output voltage swings. The low input impedance of the common-base/gate PA makes the PA less susceptible to frequency roll-off, even in the presence of large parasitic capacitance produced by the transmitter. At the same time, the low input impedance of the common-base/gate PA reduces the voltage swing at the transmitter output and prevents the transmitter output from being compressed or modulated, In an embodiment, the DC output current of the transmitter is reused to bias the PA, which results in power savings compared to conventional transmitter topologies.