摘要:
In an embodiment, a processor includes a plurality of cores to independently execute instructions, at least one graphics engine to independently execute graphics instructions, and a power controller including an alignment logic to cause at least one workload to be executed on a first core to be rescheduled to a different time to enable the plurality of cores to be active during an active time window and to be in a low power state during an idle time window. Other embodiments are described and claimed.
摘要:
Fast platform hibernation and resumption for computing systems. An embodiment of an apparatus includes a volatile system memory, a nonvolatile memory, and a processor to operate according to an operating system, the processor to transition the apparatus to a first reduced power state upon receipt of a request, the transition to the first reduced power state including the processor to store context information for the computer in the volatile system memory. The apparatus further includes logic to transition the apparatus to a second reduced power state, the logic to copy the context data from the volatile system memory to the nonvolatile memory for the transition to the second reduced power state, where copying of the context data includes the logic to scan the volatile system memory to locate non-active memory elements in the volatile system memory, eliminate the non-active memory elements from the volatile system memory to generate compressed context data, and store the compressed context data in the nonvolatile memory.
摘要:
With embodiments of the invention, a more robust solution is provided using a storage driver that may already be used for the platforms operating system. This is efficient because the storage driver typically already monitors storage drive access requests, and thus knows when traffic is outstanding (performance may be critical) or when it's not outstanding (and power may be saved).
摘要:
With embodiments of the invention, a more robust solution is provided using a storage driver that may already be used for the platforms operating system. This is efficient because the storage driver typically already monitors storage drive access requests, and thus knows when traffic is outstanding (performance may be critical) or when it's not outstanding (and power may be saved).
摘要:
With embodiments of the invention, a more robust solution is provided using a storage driver that may already be used for the platforms operating system. This is efficient because the storage driver typically already monitors storage drive access requests, and thus knows when traffic is outstanding (performance may be critical) or when it's not outstanding (and power may be saved).
摘要:
Various embodiments are generally directed to an apparatus, method and other techniques for receiving information to invoke a transition from a first operating system to a second operating system, copying a system context for the second operating system from a location of a non-volatile memory to a volatile memory, the location associated with the second operating system and transitioning from the first operating system to the second operating system using the system context for the second operating system.
摘要:
Fast platform hibernation and resumption for computing systems. An embodiment of an apparatus includes a volatile system memory, a nonvolatile memory, and a processor to operate according to an operating system, the processor to transition the apparatus to a first reduced power state upon receipt of a request, the transition to the first reduced power state including the processor to store context information for the computer in the volatile system memory. The apparatus further includes logic to transition the apparatus to a second reduced power state, the logic to copy the context data from the volatile system memory to the nonvolatile memory for the transition to the second reduced power state, where copying of the context data includes the logic to scan the volatile system memory to locate non-active memory elements in the volatile system memory, eliminate the non-active memory elements from the volatile system memory to generate compressed context data, and store the compressed context data in the nonvolatile memory.
摘要:
A method and system to perform a fast reset or restart of a platform by minimizing the hardware initialization of IO devices in the platform during a restart of the platform. The basic input/output system (BIOS) of the platform traps any software initiated reset request (SIRR) or warm reset. The BIOS restores the input/output (IO) devices coupled with the platform to their previous hardware state to avoid the full platform initialization when the SIRR is trapped. The restart of the platform can be performed in a fast manner as the full platform initialization is minimized.
摘要:
In some embodiments, an apparatus includes processor cores, a smaller non-volatile memory, a larger non-volatile memory to hold an operating system, programs, and data for use by the processor cores. The apparatus also includes volatile memory to act as system memory for the processor cores, and power management logic to control at least some aspects of power management. In response to a power state change command, a system context is stored in the smaller non-volatile memory followed by the volatile memory losing power, and in response to a resume command, the volatile memory receives power and receives at least a portion of the system context from the smaller non-volatile memory. Other embodiments are described.
摘要:
Memory allocation for fast platform hibernation and resumption of computing systems. An embodiment of an apparatus includes logic at least partially implemented in hardware, the logic to: dynamically allocate at least a first portion of a nonvolatile memory; in response to a command to enter the apparatus into a standby state, the logic to store at least a portion of a context data from a volatile memory to the dynamically allocated first portion of the nonvolatile memory; and in response to a resumption of operation of the apparatus, the logic to copy at least the portion of the context data from the first portion of the nonvolatile memory to the volatile memory, and to reclaim the first portion of the nonvolatile memory for dynamic allocation.